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A k-coloring of [X]"is a map c: [X]" — {0,1,..., k —1}.

H C X is homogeneous for ¢ there is an i < k s.t. every set in [H]"
has color i.

RT}: Every k-coloring of [N]” has an infinite homogeneous set.

We can think of RT}] as a problem: ¢ : [N]” — {0,1,...,k—1}is an
instance, and an infinite homogeneous H C N is a solution.

Thm (Jockusch). For n, k > 2, computable instances of RT} have
MO solutions, but not always ¥? solutions.

Patey: For n > 2, the complexity of solutions also increases with k.
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We work in second-order arithmetic, coding finite objects as numbers
and countably infinite ones as sets of numbers.

We denote first-order objects by lowercase letters and second-order
ones by uppercase letters.

We focus on I} statements of the form
VX [p(X) = Y P(X, V)]
where ¢ and v are arithmetic.
We can think of such a statement as a problem.
An instance of this problem is an X such that ¢(X) holds.
A solution to this instance is a Y such that (X, Y) holds.

P and @ will denote such problems.
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Dzhafarov: P is computably reducible to @, written P <. Q, if
for every instance X of P,
there is an X-computable instance X of Q sit.,
for every solution Y to X,

there is an X & \A/—computable solution to X.

Problems: P Q
Instances: X —

+
Solutions: — Y

Thm (Jockusch). RT} <. RT2 < RT; < RT} <.---

Thm (Patey). RT; <. RT; <.RT, <.--- forn > 2.
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Weihrauch: P is Weihrauch reducible to @, written P <, Q, if
there are Turing functionals ¢ and V¥ s.t.,
for every instance X of P,
®X is an instance of Q,
and for every solution Y to &,

YXDY is a solution to X.

Problems: P Q

Instances: X 5 X
+

Solutions: Y +— Y

Thm (Rakotoniaina / Patey / Hirschfeldt and Jockusch).
RTS <w RT3 < RT} <y ---
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A Turing ideal is a nonempty Z C 2" s.t. if A is computable from
By,...,B,€Z,then Ac 1.

We can think of a Turing ideal as a context for computable
mathematics.

A problem VX [p(X) — Y (X, Y)] holds in L if

VX e Z[p(X) — Y e Zy(X,Y)].
We say that P is w-reducible to Q, written P <, Q, if P holds in
every Turing ideal in which @ holds.
Write P=, Qif P <, Q@ and Q <, P.
For a fixed n, we have RT} =, RT} for all j, k > 2.

For m,n > 3, we have RT{ =, RT}, but RT; <, RT? <, RT;.
(Jockusch, Specker, Seetapun)
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Hirschfeldt and Jockusch: Reduction games

These are two-player games for reducing P to Q.

Player 1 will play a P-instance Xp.

will try to obtain a solution to Xy by asking Player 1 to solve
various @-instances.

If ever plays such a solution, it wins, and the game ends.

If the game never ends then Player 1 wins.

If a player cannot make a move, the opponent wins.
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The reduction game G(Q — P):
First Move:

Player 1: A P-instance Xp.

. Either an Xp-computable solution to Xp, or an
Xo-computable Q-instance Y;.

Second Move:
Player 1: A solution X to Y;.

. Either an (Xo & Xi)-computable solution to Xj, or an
(Xo @ X1)-computable Q-instance Y5.

Third Move:
Player 1: A solution X; to Y5.

. Either an (Xo & Xi & X;)-computable solution to Xj,
or an (Xp @ X1 @ X;)-computable Q-instance Yj.
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Thm (Hirschfeldt and Jockusch). RT} <., ID.
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Write P <" Q if Player 2 has a winning strategy for G(Q — P) that
wins in at most n + 1 many moves, and similarly for gW.

Theorem (Hirschfeldt and Jockusch). For n >3 and j > 1, if
n+(—1)(n—2)<m<n+j(n—2)

then . '
RTY <ng1 RT, but RT/ ;{{J RT}.

Theorem (Hirschfeldt and Jockusch). For j > 2 and
_/ < k <Jm+1,

RT, <0'RT; but RT, £ RT;.

Patey determined the least ms.t. RT} <7 RT] for n > 2 and j < k.

For n > 3, this m is always 2. For n = 2 it goes to infinity with k.
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RT <, RT3 but RT ¢/, RT; for all j.

RT! <,» RT3 but RT! ¢/, RT} for all j.
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In reverse mathematics, we work in a two-sorted first-order language,
with the usual symbols of first-order arithmetic and €.

Full second-order arithmetic consists of the basic axioms of first-order
arithmetic, induction, and comprehension.

The usual base theory RCAq consists of the basic axioms,

AY-comprehension:
Vnlo(n) < ¥(n)] — 3XVn[ne X < o(n)]

for all ¢, s.t. pis X9 and 1 is M2, and X is not free in ¢,

and ¥%-induction:

(#(0) A Vnle(n) = (n+1)]) = Vne(n)

for all £2 formulas ¢.
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A model M in the language of second-order arithmetic consists of a
first-order part A/ and a second-order part S C 2WV1.

If A is standard, we call M an w-model and identify it with S.

An w-model satisfies RCA, iff it is a Turing ideal.

If RCAg F Q@ — P then P <, Q, but not always vice-versa.

RT <, RT3 but RCAy ¥ RT3 — RT.
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Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes
defined reduction games over models of RCA.

The notions of instance and solution of a problem still make sense
over any structure A in the language of first-order arithmetic.

For Xo,..., X, C|N|, let N[Xo, ..., X,] = (N,S) where S consists
of all subsets of |\/] that are A-definable from parameters in
NTU{Xo, ..., Xn}.
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The RCA(-reduction game GR“%(Q — P):
First Move:
Player 1: A model (N, S) of RCAq with |[N| countable, and a
P-instance Xy € S.
. Either a solution to Xy in N[Xp], or a Q-instance
Y1 € N[Xo].
Second Move:
Player 1: A solution Xj to Y7 in S.
. Either a solution to Xp in N[Xp, X1], or a Q-instance
Y, € N[ Xo, X1].
Third Move:
Player 1: A solution X, to Y, in S.

. Either a solution to Xi in N[Xp, X1, X5], or a
Q-instance Y; € N[Xp, X1, Xo].
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Thm (Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and
Reitzes). If RCAg F Q — P then Player 2 has a winning strategy for
GR(Q — P). Otherwise, Player 1 does.

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If RCAq - Q — P
then there is an n € w s.t. Player 2 has a winning strategy for
GR(Q — P) that wins in at most n many moves.

The least such n can be seen as measuring the minimal number of
applications of @ needed in proving P over RCA,.
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P is generalized Weihrauch reducible to Q over RCAg, written
P <R Q, if Player 2 has a computable (i.e., A?) winning strategy
for GRM(Q — P).

Let j,k > 2. Then RT' =, RT; =,, RT}, and RT; =R RT,, but
Hirst showed that RCAg ¥ RT?, so RT* £k RT,.

Theorem (Dzhafarov, Hirschfeldt, and Reitzes). If P <% Q
then there is an n € w s.t. Player 2 has a computable winning
strategy for GR“(Q — P) that wins in at most n many moves.

We can also define computable reducibility and Weihrauch
reducibility over RCAy using 2-move games.
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