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[X ]n is the set of n-element subsets of X .

A k-coloring of [X ]n is a map c : [X ]n → {0, 1, . . . , k − 1}.

H ⊆ X is homogeneous for c there is an i < k s.t. every set in [H]n

has color i .

RTn
k : Every k-coloring of [N]n has an infinite homogeneous set.

We can think of RTn
k as a problem: c : [N]n → {0, 1, . . . , k − 1} is an

instance, and an infinite homogeneous H ⊆ N is a solution.

Thm (Jockusch). For n, k > 2, computable instances of RTn
k have

Π0
n solutions, but not always Σ0

n solutions.

Patey: For n > 2, the complexity of solutions also increases with k .



[X ]n is the set of n-element subsets of X .

A k-coloring of [X ]n is a map c : [X ]n → {0, 1, . . . , k − 1}.

H ⊆ X is homogeneous for c there is an i < k s.t. every set in [H]n

has color i .

RTn
k : Every k-coloring of [N]n has an infinite homogeneous set.

We can think of RTn
k as a problem: c : [N]n → {0, 1, . . . , k − 1} is an

instance, and an infinite homogeneous H ⊆ N is a solution.

Thm (Jockusch). For n, k > 2, computable instances of RTn
k have

Π0
n solutions, but not always Σ0

n solutions.

Patey: For n > 2, the complexity of solutions also increases with k .



[X ]n is the set of n-element subsets of X .

A k-coloring of [X ]n is a map c : [X ]n → {0, 1, . . . , k − 1}.

H ⊆ X is homogeneous for c there is an i < k s.t. every set in [H]n

has color i .

RTn
k : Every k-coloring of [N]n has an infinite homogeneous set.

We can think of RTn
k as a problem: c : [N]n → {0, 1, . . . , k − 1} is an

instance, and an infinite homogeneous H ⊆ N is a solution.

Thm (Jockusch). For n, k > 2, computable instances of RTn
k have

Π0
n solutions, but not always Σ0

n solutions.

Patey: For n > 2, the complexity of solutions also increases with k .



[X ]n is the set of n-element subsets of X .

A k-coloring of [X ]n is a map c : [X ]n → {0, 1, . . . , k − 1}.

H ⊆ X is homogeneous for c there is an i < k s.t. every set in [H]n

has color i .

RTn
k : Every k-coloring of [N]n has an infinite homogeneous set.

We can think of RTn
k as a problem: c : [N]n → {0, 1, . . . , k − 1} is an

instance, and an infinite homogeneous H ⊆ N is a solution.

Thm (Jockusch). For n, k > 2, computable instances of RTn
k have

Π0
n solutions, but not always Σ0

n solutions.

Patey: For n > 2, the complexity of solutions also increases with k .



We work in second-order arithmetic, coding finite objects as numbers
and countably infinite ones as sets of numbers.

We denote first-order objects by lowercase letters and second-order
ones by uppercase letters.

We focus on Π1
2 statements of the form

∀X [ϕ(X ) → ∃Y ψ(X ,Y )]

where ϕ and ψ are arithmetic.

We can think of such a statement as a problem.

An instance of this problem is an X such that ϕ(X ) holds.

A solution to this instance is a Y such that ψ(X ,Y ) holds.

P and Q will denote such problems.
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Dzhafarov: P is computably reducible to Q, written P 6c Q, if

for every instance X of P ,

there is an X -computable instance X̂ of Q s.t.,

for every solution Ŷ to X̂ ,

there is an X ⊕ Ŷ -computable solution to X .

Problems: P Q

Instances: X −→ X̂

↓
Solutions: Y ←− Ŷ

Thm (Jockusch). RT1
k <c RT2

k <c RT3
k <c RT4

k <c · · ·

Thm (Patey). RTn
2 <c RTn

3 <c RTn
4 <c · · · for n > 2.
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Weihrauch: P is Weihrauch reducible to Q, written P 6W Q, if

there are Turing functionals Φ and Ψ s.t.,

for every instance X of P ,

ΦX is an instance of Q,

and for every solution Ŷ to ΦX ,

ΨX⊕Ŷ is a solution to X .

Problems: P Q

Instances: X
Φ−→ X̂

↓
Ψ

Solutions: Y ←− Ŷ

Thm (Rakotoniaina / Patey / Hirschfeldt and Jockusch).
RTn

2 <W RTn
3 <W RTn

4 <W · · · .
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A Turing ideal is a nonempty I ⊆ 2N s.t. if A is computable from
B0, . . . ,Bn ∈ I, then A ∈ I.

We can think of a Turing ideal as a context for computable
mathematics.

A problem ∀X [ϕ(X ) → ∃Y ψ(X ,Y )] holds in I if

∀X ∈ I [ϕ(X ) → ∃Y ∈ I ψ(X ,Y )].

We say that P is ω-reducible to Q, written P 6ω Q, if P holds in
every Turing ideal in which Q holds.

Write P ≡ω Q if P 6ω Q and Q 6ω P .

For a fixed n, we have RTn
j ≡ω RTn

k for all j , k > 2.

For m, n > 3, we have RTm
k ≡ω RTn

k , but RT1
k <ω RT2

k <ω RT3
k .

(Jockusch, Specker, Seetapun)
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Hirschfeldt and Jockusch: Reduction games

These are two-player games for reducing P to Q.

Player 1 will play a P-instance X0.

Player 2 will try to obtain a solution to X0 by asking Player 1 to solve
various Q-instances.

If Player 2 ever plays such a solution, it wins, and the game ends.

If the game never ends then Player 1 wins.

If a player cannot make a move, the opponent wins.
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The reduction game G (Q → P):

First Move:

Player 1: A P-instance X0.

Player 2: Either an X0-computable solution to X0, or an
X0-computable Q-instance Y1.

Second Move:

Player 1: A solution X1 to Y1.

Player 2: Either an (X0 ⊕ X1)-computable solution to X0, or an
(X0 ⊕ X1)-computable Q-instance Y2.

Third Move:

Player 1: A solution X2 to Y2.

Player 2: Either an (X0 ⊕ X1 ⊕ X2)-computable solution to X0,
or an (X0 ⊕ X1 ⊕ X2)-computable Q-instance Y3....
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Thm (Hirschfeldt and Jockusch). If P 6ω Q then Player 2 has a
winning strategy for G (Q → P). Otherwise, Player 1 has a winning
strategy for G (Q → P).

P is generalized Weihrauch reducible to Q, written P 6gW Q, if
Player 2 has a computable winning strategy for G (Q → P).

Neumann and Pauly independently gave an equivalent definition to
gW-reducibility.

For a fixed n, we have RTn
j ≡gW RTn

k for all j , k > 2.

Thm (Hirschfeldt and Jockusch). For m, n > 3, we have
RTm

k ≡gW RTn
k .

Let ID be ∀X ∃Y Y = X . Then RT1
k 6c ID but RT1

k 
W ID.

Thm (Hirschfeldt and Jockusch). RT1
k 
gW ID.
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Write P 6n
ω Q if Player 2 has a winning strategy for G (Q → P) that

wins in at most n + 1 many moves, and similarly for gW.
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Patey determined the least m s.t. RTn
k 6m

ω RTn
j for n > 2 and j < k .

For n > 3, this m is always 2. For n = 2 it goes to infinity with k .
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In reverse mathematics, we work in a two-sorted first-order language,
with the usual symbols of first-order arithmetic and ∈.

Full second-order arithmetic consists of the basic axioms of first-order
arithmetic, induction, and comprehension.

The usual base theory RCA0 consists of the basic axioms,

∆0
1-comprehension:

∀n [ϕ(n) ↔ ψ(n)] → ∃X ∀n [n ∈ X ↔ ϕ(n)]

for all ϕ, ψ s.t. ϕ is Σ0
1 and ψ is Π0

1, and X is not free in ϕ,

and Σ0
1-induction:

(ϕ(0) ∧ ∀n [ϕ(n) → ϕ(n + 1)]) → ∀nϕ(n)

for all Σ0
1 formulas ϕ.
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A model M in the language of second-order arithmetic consists of a
first-order part N and a second-order part S ⊆ 2|N |.

If N is standard, we call M an ω-model and identify it with S.

An ω-model satisfies RCA0 iff it is a Turing ideal.

If RCA0 ` Q → P then P 6ω Q, but not always vice-versa.

RT 6ω RT3
2 but RCA0 0 RT3

2 → RT.
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Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes
defined reduction games over models of RCA0.

The notions of instance and solution of a problem still make sense
over any structure N in the language of first-order arithmetic.

For X0, . . . ,Xn ⊆ |N |, let N [X0, . . . ,Xn] = (N , S) where S consists
of all subsets of |N | that are ∆0

1-definable from parameters in
|N | ∪ {X0, . . . ,Xn}.
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The RCA0-reduction game GRCA0(Q → P):

First Move:

Player 1: A model (N , S) of RCA0 with |N | countable, and a
P-instance X0 ∈ S .

Player 2: Either a solution to X0 in N [X0], or a Q-instance
Y1 ∈ N [X0].

Second Move:

Player 1: A solution X1 to Y1 in S .

Player 2: Either a solution to X0 in N [X0,X1], or a Q-instance
Y2 ∈ N [X0,X1].

Third Move:

Player 1: A solution X2 to Y2 in S .

Player 2: Either a solution to X1 in N [X0,X1,X2], or a
Q-instance Y3 ∈ N [X0,X1,X2]....
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Thm (Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and
Reitzes). If RCA0 ` Q → P then Player 2 has a winning strategy for
GRCA0(Q → P). Otherwise, Player 1 does.

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If RCA0 ` Q → P
then there is an n ∈ ω s.t. Player 2 has a winning strategy for
GRCA0(Q → P) that wins in at most n many moves.

The least such n can be seen as measuring the minimal number of
applications of Q needed in proving P over RCA0.
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P is generalized Weihrauch reducible to Q over RCA0, written
P 6RCA0

gW Q, if Player 2 has a computable (i.e., ∆0
1) winning strategy

for GRCA0(Q → P).

Let j , k > 2. Then RT1 ≡gW RT1
j ≡gW RT1

k , and RT1
j ≡RCA0

gW RT1
k , but

Hirst showed that RCA0 0 RT1, so RT1 
RCA0
gW RT1

k .

Theorem (Dzhafarov, Hirschfeldt, and Reitzes). If P 6RCA0
gW Q

then there is an n ∈ ω s.t. Player 2 has a computable winning
strategy for GRCA0(Q → P) that wins in at most n many moves.

We can also define computable reducibility and Weihrauch
reducibility over RCA0 using 2-move games.
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