Reductions Between Problems in Reverse Mathematics and Computability Theory

Denis R. Hirschfeldt

A k-coloring of $[X]^n$ is a map $c : [X]^n \to \{0, 1, \dots, k-1\}$.

 $H \subseteq X$ is homogeneous for c there is an i < k s.t. every set in $[H]^n$ has color i.

 RT_k^n : Every k-coloring of $[\mathbb{N}]^n$ has an infinite homogeneous set.

A k-coloring of $[X]^n$ is a map $c : [X]^n \to \{0, 1, \dots, k-1\}$.

 $H \subseteq X$ is homogeneous for c there is an i < k s.t. every set in $[H]^n$ has color i.

 RT_k^n : Every k-coloring of $[\mathbb{N}]^n$ has an infinite homogeneous set.

We can think of RT_k^n as a problem: $c : [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ is an instance, and an infinite homogeneous $H \subseteq \mathbb{N}$ is a solution.

A k-coloring of $[X]^n$ is a map $c : [X]^n \to \{0, 1, \dots, k-1\}$.

 $H \subseteq X$ is homogeneous for c there is an i < k s.t. every set in $[H]^n$ has color i.

 RT_k^n : Every k-coloring of $[\mathbb{N}]^n$ has an infinite homogeneous set.

We can think of RT_k^n as a problem: $c : [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ is an instance, and an infinite homogeneous $H \subseteq \mathbb{N}$ is a solution.

Thm (Jockusch). For $n, k \ge 2$, computable instances of RT_k^n have Π_n^0 solutions, but not always Σ_n^0 solutions.

A k-coloring of $[X]^n$ is a map $c : [X]^n \to \{0, 1, \dots, k-1\}$.

 $H \subseteq X$ is homogeneous for c there is an i < k s.t. every set in $[H]^n$ has color i.

 RT_k^n : Every k-coloring of $[\mathbb{N}]^n$ has an infinite homogeneous set.

We can think of RT_k^n as a problem: $c : [\mathbb{N}]^n \to \{0, 1, \dots, k-1\}$ is an instance, and an infinite homogeneous $H \subseteq \mathbb{N}$ is a solution.

Thm (Jockusch). For $n, k \ge 2$, computable instances of RT_k^n have Π_n^0 solutions, but not always Σ_n^0 solutions.

Patey: For $n \ge 2$, the complexity of solutions also increases with *k*.

We denote first-order objects by lowercase letters and second-order ones by uppercase letters.

We denote first-order objects by lowercase letters and second-order ones by uppercase letters.

We focus on Π^1_2 statements of the form

$$\forall X \left[\varphi(X) \rightarrow \exists Y \psi(X, Y) \right]$$

where φ and ψ are arithmetic.

We denote first-order objects by lowercase letters and second-order ones by uppercase letters.

We focus on Π_2^1 statements of the form

$$\forall X \left[\varphi(X) \to \exists Y \psi(X, Y) \right]$$

where φ and ψ are arithmetic.

We can think of such a statement as a problem.

An *instance* of this problem is an X such that $\varphi(X)$ holds.

A solution to this instance is a Y such that $\psi(X, Y)$ holds.

We denote first-order objects by lowercase letters and second-order ones by uppercase letters.

We focus on Π_2^1 statements of the form

$$\forall X \left[\varphi(X) \to \exists Y \psi(X, Y) \right]$$

where φ and ψ are arithmetic.

We can think of such a statement as a problem.

An *instance* of this problem is an X such that $\varphi(X)$ holds.

A solution to this instance is a Y such that $\psi(X, Y)$ holds.

P and Q will denote such problems.

there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X} ,

there is an $X \oplus \widehat{Y}$ -computable solution to X.

there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X} ,

Ρ

there is an $X \oplus \widehat{Y}$ -computable solution to X.

Problems:

Instances:

Dzhafarov: P is computably reducible to Q, written $P \leq_c Q$, if for every instance X of P. there is an X-computable instance \widehat{X} of Q s.t.. for every solution \widehat{Y} to \widehat{X} , there is an $X \oplus \widehat{Y}$ -computable solution to X. Problems: Ρ Х Instances:

there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X} ,

there is an $X \oplus \widehat{Y}$ -computable solution to X.

Problems:

 $\begin{array}{ccc} P & Q \\ X & \longrightarrow & \widehat{X} \end{array}$

Instances:

there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X} ,

there is an $X \oplus \widehat{Y}$ -computable solution to X.

Problems:

Instances:

 $\begin{array}{ccc} P & Q \\ X & \longrightarrow & \widehat{X} \end{array}$

 $\widehat{\mathbf{Y}}$

there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X} ,

there is an $X \oplus \widehat{Y}$ -computable solution to X.

Problems:

Instances:

there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X} ,

there is an $X \oplus \widehat{Y}$ -computable solution to X.

Thm (Jockusch). $\mathsf{RT}_k^1 <_{\mathsf{c}} \mathsf{RT}_k^2 <_{\mathsf{c}} \mathsf{RT}_k^3 <_{\mathsf{c}} \mathsf{RT}_k^4 <_{\mathsf{c}} \cdots$

there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X} ,

there is an $X \oplus \widehat{Y}$ -computable solution to X.

Thm (Jockusch). $\mathsf{RT}_k^1 <_{\mathsf{c}} \mathsf{RT}_k^2 <_{\mathsf{c}} \mathsf{RT}_k^3 <_{\mathsf{c}} \mathsf{RT}_k^4 <_{\mathsf{c}} \cdots$

Thm (Patey). $\operatorname{RT}_2^n <_{\operatorname{c}} \operatorname{RT}_3^n <_{\operatorname{c}} \operatorname{RT}_4^n <_{\operatorname{c}} \cdots$ for $n \ge 2$.

Weihrauch: P is Weihrauch reducible to Q, written $P \leq_w Q$, if there are Turing functionals Φ and Ψ s.t., for every instance X of P, Φ^X is an instance of Q, and for every solution \widehat{Y} to Φ^X , $\Psi^{X \oplus \widehat{Y}}$ is a solution to X. Weihrauch: P is Weihrauch reducible to Q, written $P \leq_w Q$, if there are Turing functionals Φ and Ψ s.t., for every instance X of P, Φ^X is an instance of Q, and for every solution \widehat{Y} to Φ^X , $\Psi^{X \oplus \widehat{Y}}$ is a solution to X.

Problems:

P Q

Instances:

Weihrauch: P is Weihrauch reducible to Q, written $P \leq_{W} Q$, if there are Turing functionals Φ and Ψ s.t., for every instance X of P, Φ^X is an instance of Q. and for every solution \widehat{Y} to Φ^X . $\Psi^{X \oplus \widehat{Y}}$ is a solution to X Problems: Ρ Q X Instances:

Weihrauch: P is Weihrauch reducible to Q, written $P \leq_{W} Q$, if there are Turing functionals Φ and Ψ s.t., for every instance X of P, Φ^X is an instance of Q. and for every solution \widehat{Y} to Φ^X , $\Psi^{X \oplus \widehat{Y}}$ is a solution to X Problems: $\begin{array}{ccc} & & \mathbf{v} \\ \mathbf{X} & \stackrel{\Phi}{\longrightarrow} & \widehat{\mathbf{X}} \end{array}$

Instances:

Weihrauch: P is Weihrauch reducible to Q, written $P \leq_{W} Q$, if there are Turing functionals Φ and Ψ s.t., for every instance X of P, Φ^X is an instance of Q. and for every solution \widehat{Y} to Φ^X , $\Psi^{X \oplus \widehat{Y}}$ is a solution to X Problems: $\begin{array}{ccc} & & & \mathbf{x} \\ \mathbf{X} & \stackrel{\Phi}{\longrightarrow} & \widehat{\mathbf{X}} \end{array}$

Instances:

Solutions:

 \widehat{Y}

Weihrauch: P is Weihrauch reducible to Q, written $P \leq_w Q$, if there are Turing functionals Φ and Ψ s.t., for every instance X of P, Φ^X is an instance of Q, and for every solution \widehat{Y} to Φ^X , $\Psi^{X \oplus \widehat{Y}}$ is a solution to X.

Weihrauch: P is Weihrauch reducible to Q, written $P \leq_{W} Q$, if there are Turing functionals Φ and Ψ s.t., for every instance X of P. Φ^X is an instance of Q. and for every solution \widehat{Y} to Φ^X , $\Psi^{X \oplus \widehat{Y}}$ is a solution to X Problems:

Solutions:

Thm (Rakotoniaina / Patey / Hirschfeldt and Jockusch). $RT_2^n <_w RT_3^n <_w RT_4^n <_w \cdots$.

 $\mathbf{v} \stackrel{\circ}{\leftarrow} \widehat{\mathbf{v}}$

We can think of a Turing ideal as a context for computable mathematics.

We can think of a Turing ideal as a context for computable mathematics.

A problem $\forall X [\varphi(X) \rightarrow \exists Y \psi(X, Y)]$ holds in \mathcal{I} if

 $\forall X \in \mathcal{I} \left[\varphi(X) \rightarrow \exists Y \in \mathcal{I} \psi(X, Y) \right].$

We can think of a Turing ideal as a context for computable mathematics.

A problem $\forall X [\varphi(X) \rightarrow \exists Y \psi(X, Y)]$ holds in \mathcal{I} if

$$\forall X \in \mathcal{I} \left[\varphi(X) \rightarrow \exists Y \in \mathcal{I} \psi(X, Y) \right].$$

We say that P is ω -reducible to Q, written $P \leq_{\omega} Q$, if P holds in every Turing ideal in which Q holds.

We can think of a Turing ideal as a context for computable mathematics.

A problem $\forall X [\varphi(X) \rightarrow \exists Y \psi(X, Y)]$ holds in \mathcal{I} if

$$\forall X \in \mathcal{I} \left[\varphi(X) \rightarrow \exists Y \in \mathcal{I} \psi(X, Y) \right].$$

We say that P is ω -reducible to Q, written $P \leq_{\omega} Q$, if P holds in every Turing ideal in which Q holds.

Write $P \equiv_{\omega} Q$ if $P \leqslant_{\omega} Q$ and $Q \leqslant_{\omega} P$.

For a fixed *n*, we have $RT_i^n \equiv_{\omega} RT_k^n$ for all $j, k \ge 2$.

We can think of a Turing ideal as a context for computable mathematics.

A problem $\forall X [\varphi(X) \rightarrow \exists Y \psi(X, Y)]$ holds in \mathcal{I} if

$$\forall X \in \mathcal{I} \left[\varphi(X) \rightarrow \exists Y \in \mathcal{I} \psi(X, Y) \right].$$

We say that P is ω -reducible to Q, written $P \leq_{\omega} Q$, if P holds in every Turing ideal in which Q holds.

Write $P \equiv_{\omega} Q$ if $P \leqslant_{\omega} Q$ and $Q \leqslant_{\omega} P$.

For a fixed *n*, we have $\mathsf{RT}_{j}^{n} \equiv_{\omega} \mathsf{RT}_{k}^{n}$ for all $j, k \ge 2$.

For $m, n \ge 3$, we have $\mathsf{RT}_k^m \equiv_{\omega} \mathsf{RT}_k^n$, but $\mathsf{RT}_k^1 <_{\omega} \mathsf{RT}_k^2 <_{\omega} \mathsf{RT}_k^3$. (Jockusch, Specker, Seetapun)

Hirschfeldt and Jockusch: Reduction games

These are two-player games for reducing P to Q.

Hirschfeldt and Jockusch: Reduction games

These are two-player games for reducing P to Q.

```
Player 1 will play a P-instance X_0.
```

Player 2 will try to obtain a solution to X_0 by asking Player 1 to solve various Q-instances.

If Player 2 ever plays such a solution, it wins, and the game ends.

Hirschfeldt and Jockusch: Reduction games

These are two-player games for reducing P to Q.

```
Player 1 will play a P-instance X_0.
```

Player 2 will try to obtain a solution to X_0 by asking Player 1 to solve various Q-instances.

If Player 2 ever plays such a solution, it wins, and the game ends.

If the game never ends then Player 1 wins.

If a player cannot make a move, the opponent wins.

The reduction game $G(Q \rightarrow P)$:

The reduction game $G(Q \rightarrow P)$:

First Move:

Player 1: A *P*-instance X_0 .

The reduction game $G(Q \rightarrow P)$:

First Move:

Player 1: A *P*-instance X_0 .

Player 2: Either an X_0 -computable solution to X_0 , or an X_0 -computable Q-instance Y_1 .

The reduction game $G(Q \rightarrow P)$:

First Move:

Player 1: A *P*-instance X_0 .

Player 2: Either an X_0 -computable solution to X_0 , or an X_0 -computable Q-instance Y_1 .

Second Move:

Player 1: A solution X_1 to Y_1 .

The reduction game $G(Q \rightarrow P)$:

First Move:

Player 1: A *P*-instance X_0 .

Player 2: Either an X_0 -computable solution to X_0 , or an X_0 -computable Q-instance Y_1 .

Second Move:

Player 1: A solution X_1 to Y_1 .

Player 2: Either an $(X_0 \oplus X_1)$ -computable solution to X_0 , or an $(X_0 \oplus X_1)$ -computable *Q*-instance Y_2 .

The reduction game $G(Q \rightarrow P)$:

First Move:

Player 1: A *P*-instance X_0 .

Player 2: Either an X_0 -computable solution to X_0 , or an X_0 -computable Q-instance Y_1 .

Second Move:

Player 1: A solution X_1 to Y_1 .

Player 2: Either an $(X_0 \oplus X_1)$ -computable solution to X_0 , or an $(X_0 \oplus X_1)$ -computable *Q*-instance Y_2 .

Third Move:

i

Player 1: A solution X_2 to Y_2 .

Player 2: Either an $(X_0 \oplus X_1 \oplus X_2)$ -computable solution to X_0 , or an $(X_0 \oplus X_1 \oplus X_2)$ -computable *Q*-instance Y_3 .

P is generalized Weihrauch reducible to *Q*, written $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

P is generalized Weihrauch reducible to *Q*, written $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Neumann and Pauly independently gave an equivalent definition to gW-reducibility.

P is generalized Weihrauch reducible to *Q*, written $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Neumann and Pauly independently gave an equivalent definition to gW-reducibility.

For a fixed *n*, we have $\mathsf{RT}_j^n \equiv_{gW} \mathsf{RT}_k^n$ for all $j, k \ge 2$.

P is generalized Weihrauch reducible to *Q*, written $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Neumann and Pauly independently gave an equivalent definition to gW-reducibility.

For a fixed *n*, we have $\mathsf{RT}_{j}^{n} \equiv_{\mathsf{gW}} \mathsf{RT}_{k}^{n}$ for all $j, k \ge 2$.

Thm (Hirschfeldt and Jockusch). For $m, n \ge 3$, we have $RT_k^m \equiv_{gW} RT_k^n$.

P is generalized Weihrauch reducible to *Q*, written $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Neumann and Pauly independently gave an equivalent definition to gW-reducibility.

For a fixed *n*, we have $\mathsf{RT}_{j}^{n} \equiv_{\mathsf{gW}} \mathsf{RT}_{k}^{n}$ for all $j, k \ge 2$.

Thm (Hirschfeldt and Jockusch). For $m, n \ge 3$, we have $RT_k^m \equiv_{gW} RT_k^n$.

Let ID be $\forall X \exists Y Y = X$. Then $\mathsf{RT}^1_k \leq_{\mathsf{c}} \mathsf{ID}$ but $\mathsf{RT}^1_k \notin_{\mathsf{W}} \mathsf{ID}$.

P is generalized Weihrauch reducible to *Q*, written $P \leq_{gW} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Neumann and Pauly independently gave an equivalent definition to gW-reducibility.

For a fixed *n*, we have $\mathsf{RT}_{j}^{n} \equiv_{\mathsf{gW}} \mathsf{RT}_{k}^{n}$ for all $j, k \ge 2$.

Thm (Hirschfeldt and Jockusch). For $m, n \ge 3$, we have $RT_k^m \equiv_{gW} RT_k^n$.

Let ID be $\forall X \exists Y Y = X$. Then $\mathsf{RT}^1_k \leq_{\mathsf{c}} \mathsf{ID}$ but $\mathsf{RT}^1_k \notin_{\mathsf{W}} \mathsf{ID}$.

Thm (Hirschfeldt and Jockusch). $RT_k^1 \leq gW$ ID.

Theorem (Hirschfeldt and Jockusch). For $n \ge 3$ and $j \ge 1$, if

$$n+(j-1)(n-2) < m \leq n+j(n-2)$$

then

 $\mathsf{RT}_{k}^{m} \leqslant_{\mathsf{e}\mathsf{W}}^{j+1} \mathsf{RT}_{k}^{n}$ but $\mathsf{RT}_{k}^{m} \notin_{\mathsf{w}}^{j} \mathsf{RT}_{k}^{n}$.

Theorem (Hirschfeldt and Jockusch). For $n \ge 3$ and $j \ge 1$, if

$$(n+(j-1)(n-2)) < m \leq n+j(n-2)$$

then

$$\mathsf{RT}_k^m \leqslant_{gW}^{j+1} \mathsf{RT}_k^n$$
 but $\mathsf{RT}_k^m \notin_{\omega}^j \mathsf{RT}_k^n$.

Theorem (Hirschfeldt and Jockusch). For $j \ge 2$ and $j^m < k \le j^{m+1}$,

$$\mathsf{RT}^1_k \leqslant^{m+1}_{\mathsf{gW}} \mathsf{RT}^1_j$$
 but $\mathsf{RT}^1_k \notin^m_{\mathsf{gW}} \mathsf{RT}^1_j$.

Theorem (Hirschfeldt and Jockusch). For $n \ge 3$ and $j \ge 1$, if

$$n+(j-1)(n-2) < m \leq n+j(n-2)$$

then

$$\mathsf{RT}_k^m \leqslant_{gW}^{j+1} \mathsf{RT}_k^n$$
 but $\mathsf{RT}_k^m \notin_{\omega}^j \mathsf{RT}_k^n$.

Theorem (Hirschfeldt and Jockusch). For $j \ge 2$ and $j^m < k \le j^{m+1}$,

$$\mathsf{RT}^1_k \leqslant^{m+1}_{\mathsf{gW}} \mathsf{RT}^1_j$$
 but $\mathsf{RT}^1_k \notin^m_{\mathsf{gW}} \mathsf{RT}^1_j$.

Patey determined the least m s.t. $\operatorname{RT}_{k}^{n} \leq_{\omega}^{m} \operatorname{RT}_{j}^{n}$ for $n \ge 2$ and j < k. For $n \ge 3$, this m is always 2. For n = 2 it goes to infinity with k. RT^n is $\forall k \operatorname{RT}_k^n$.

RT is $\forall n \operatorname{RT}^n$.

 RT^n is $\forall k \operatorname{RT}_k^n$.

RT is $\forall n \operatorname{RT}^n$.

$\mathsf{RT} \leqslant_{\omega} \mathsf{RT}_2^3$ but $\mathsf{RT} \nleq_{\omega}^j \mathsf{RT}_2^3$ for all j.

 RT^n is $\forall k \operatorname{RT}_k^n$.

RT is $\forall n \operatorname{RT}^n$.

$\mathsf{RT} \leqslant_{\omega} \mathsf{RT}_2^3$ but $\mathsf{RT} \nleq_{\omega}^j \mathsf{RT}_2^3$ for all j.

 $\mathsf{RT}^1 \leqslant_{\mathsf{gW}} \mathsf{RT}^1_2$ but $\mathsf{RT}^1 \notin_{\mathsf{gW}}^j \mathsf{RT}^1_2$ for all j.

In reverse mathematics, we work in a two-sorted first-order language, with the usual symbols of first-order arithmetic and \in .

Full second-order arithmetic consists of the basic axioms of first-order arithmetic, induction, and comprehension.

In reverse mathematics, we work in a two-sorted first-order language, with the usual symbols of first-order arithmetic and \in .

Full second-order arithmetic consists of the basic axioms of first-order arithmetic, induction, and comprehension.

The usual base theory RCA_0 consists of the basic axioms, Δ_1^0 -comprehension:

 $\forall n [\varphi(n) \leftrightarrow \psi(n)] \rightarrow \exists X \forall n [n \in X \leftrightarrow \varphi(n)]$ for all φ, ψ s.t. φ is Σ_1^0 and ψ is Π_1^0 , and X is not free in φ , and Σ_1^0 -induction:

$$(\varphi(0) \land \forall n [\varphi(n) \rightarrow \varphi(n+1)]) \rightarrow \forall n \varphi(n)$$

for all Σ_1^0 formulas φ .

If \mathcal{N} is standard, we call \mathcal{M} an ω -model and identify it with \mathcal{S} .

If \mathcal{N} is standard, we call \mathcal{M} an ω -model and identify it with \mathcal{S} .

An ω -model satisfies RCA₀ iff it is a Turing ideal.

If \mathcal{N} is standard, we call \mathcal{M} an ω -model and identify it with \mathcal{S} .

An ω -model satisfies RCA₀ iff it is a Turing ideal.

If $\mathsf{RCA}_0 \vdash Q \rightarrow P$ then $P \leqslant_{\omega} Q$, but not always vice-versa.

If \mathcal{N} is standard, we call \mathcal{M} an ω -model and identify it with \mathcal{S} .

An ω -model satisfies RCA₀ iff it is a Turing ideal.

If $\operatorname{RCA}_0 \vdash Q \rightarrow P$ then $P \leq_{\omega} Q$, but not always vice-versa.

 $\mathsf{RT} \leqslant_{\omega} \mathsf{RT}_2^3$ but $\mathsf{RCA}_0 \nvDash \mathsf{RT}_2^3 \to \mathsf{RT}$.

Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes defined reduction games over models of RCA_0 .

Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes defined reduction games over models of RCA_0 .

The notions of instance and solution of a problem still make sense over any structure \mathcal{N} in the language of first-order arithmetic.

For $X_0, \ldots, X_n \subseteq |\mathcal{N}|$, let $\mathcal{N}[X_0, \ldots, X_n] = (\mathcal{N}, S)$ where S consists of all subsets of $|\mathcal{N}|$ that are Δ_1^0 -definable from parameters in $|\mathcal{N}| \cup \{X_0, \ldots, X_n\}$.

First Move:

Player 1: A model (\mathcal{N}, S) of RCA₀ with $|\mathcal{N}|$ countable, and a *P*-instance $X_0 \in S$.

First Move:

Player 1: A model (\mathcal{N}, S) of RCA₀ with $|\mathcal{N}|$ countable, and a *P*-instance $X_0 \in S$.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0]$, or a Q-instance $Y_1 \in \mathcal{N}[X_0]$.

First Move:

Player 1: A model (\mathcal{N}, S) of RCA₀ with $|\mathcal{N}|$ countable, and a *P*-instance $X_0 \in S$.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0]$, or a *Q*-instance $Y_1 \in \mathcal{N}[X_0]$.

Second Move:

Player 1: A solution X_1 to Y_1 in S.

First Move:

Player 1: A model (\mathcal{N}, S) of RCA₀ with $|\mathcal{N}|$ countable, and a *P*-instance $X_0 \in S$.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0]$, or a *Q*-instance $Y_1 \in \mathcal{N}[X_0]$.

Second Move:

Player 1: A solution X_1 to Y_1 in S.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0, X_1]$, or a *Q*-instance $Y_2 \in \mathcal{N}[X_0, X_1]$.

First Move:

Player 1: A model (\mathcal{N}, S) of RCA₀ with $|\mathcal{N}|$ countable, and a *P*-instance $X_0 \in S$.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0]$, or a *Q*-instance $Y_1 \in \mathcal{N}[X_0]$.

Second Move:

Player 1: A solution X_1 to Y_1 in S.

Player 2: Either a solution to X_0 in $\mathcal{N}[X_0, X_1]$, or a *Q*-instance $Y_2 \in \mathcal{N}[X_0, X_1]$.

Third Move:

2

Player 1: A solution X_2 to Y_2 in S.

Player 2: Either a solution to X_1 in $\mathcal{N}[X_0, X_1, X_2]$, or a Q-instance $Y_3 \in \mathcal{N}[X_0, X_1, X_2]$.

Thm (Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes). If $RCA_0 \vdash Q \rightarrow P$ then Player 2 has a winning strategy for $G^{RCA_0}(Q \rightarrow P)$. Otherwise, Player 1 does.

Thm (Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes). If $RCA_0 \vdash Q \rightarrow P$ then Player 2 has a winning strategy for $\mathcal{G}^{RCA_0}(Q \rightarrow P)$. Otherwise, Player 1 does.

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If $RCA_0 \vdash Q \rightarrow P$ then there is an $n \in \omega$ s.t. Player 2 has a winning strategy for $G^{RCA_0}(Q \rightarrow P)$ that wins in at most *n* many moves.

The least such n can be seen as measuring the minimal number of applications of Q needed in proving P over RCA₀.

P is generalized Weihrauch reducible to *Q* over *RCA*₀, written $P \leq_{gW}^{RCA_0} Q$, if Player 2 has a computable (i.e., Δ_1^0) winning strategy for $G^{RCA_0}(Q \to P)$.

P is generalized Weihrauch reducible to *Q* over *RCA*₀, written $P \leq_{gW}^{RCA_0} Q$, if Player 2 has a computable (i.e., Δ_1^0) winning strategy for $G^{RCA_0}(Q \to P)$.

Let $j, k \ge 2$. Then $\mathsf{RT}^1 \equiv_{\mathsf{gW}} \mathsf{RT}^1_j \equiv_{\mathsf{gW}} \mathsf{RT}^1_k$, and $\mathsf{RT}^1_j \equiv_{\mathsf{gW}} \mathsf{RT}^1_k$, but Hirst showed that $\mathsf{RCA}_0 \nvDash \mathsf{RT}^1$, so $\mathsf{RT}^1 \not\leq_{\mathsf{gW}} \mathsf{RCA}_0 \mathsf{RT}^1_k$. *P* is generalized Weihrauch reducible to *Q* over *RCA*₀, written $P \leq_{gW}^{RCA_0} Q$, if Player 2 has a computable (i.e., Δ_1^0) winning strategy for $G^{RCA_0}(Q \to P)$.

Let $j, k \ge 2$. Then $\mathsf{RT}^1 \equiv_{\mathsf{gW}} \mathsf{RT}^1_j \equiv_{\mathsf{gW}} \mathsf{RT}^1_k$, and $\mathsf{RT}^1_j \equiv_{\mathsf{gW}}^{\mathsf{RCA}_0} \mathsf{RT}^1_k$, but Hirst showed that $\mathsf{RCA}_0 \nvDash \mathsf{RT}^1$, so $\mathsf{RT}^1 \not\leq_{\mathsf{gW}}^{\mathsf{RCA}_0} \mathsf{RT}^1_k$.

Theorem (Dzhafarov, Hirschfeldt, and Reitzes). If $P \leq_{gW}^{RCA_0} Q$ then there is an $n \in \omega$ s.t. Player 2 has a computable winning strategy for $G^{RCA_0}(Q \to P)$ that wins in at most *n* many moves.

P is generalized Weihrauch reducible to *Q* over *RCA*₀, written $P \leq_{gW}^{RCA_0} Q$, if Player 2 has a computable (i.e., Δ_1^0) winning strategy for $G^{RCA_0}(Q \to P)$.

Let $j, k \ge 2$. Then $\mathsf{RT}^1 \equiv_{\mathsf{gW}} \mathsf{RT}^1_j \equiv_{\mathsf{gW}} \mathsf{RT}^1_k$, and $\mathsf{RT}^1_j \equiv_{\mathsf{gW}}^{\mathsf{RCA}_0} \mathsf{RT}^1_k$, but Hirst showed that $\mathsf{RCA}_0 \nvDash \mathsf{RT}^1$, so $\mathsf{RT}^1 \not\leq_{\mathsf{gW}}^{\mathsf{RCA}_0} \mathsf{RT}^1_k$.

Theorem (Dzhafarov, Hirschfeldt, and Reitzes). If $P \leq_{gW}^{RCA_0} Q$ then there is an $n \in \omega$ s.t. Player 2 has a computable winning strategy for $G^{RCA_0}(Q \to P)$ that wins in at most n many moves.

We can also define computable reducibility and Weihrauch reducibility over RCA₀ using 2-move games.

Reductions Between Problems in Reverse Mathematics and Computability Theory

Denis R. Hirschfeldt

D. R. Hirschfeldt and C. G. Jockusch, Jr., On Notions of Computability-Theoretic Reduction between Π_2^1 Principles, Journal of Mathematical Logic 16 (2016) 1650002.

D. D. Dzhafarov, D. R. Hirschfeldt, and S. C. Reitzes, Reduction Games, Provability, and Compactness, Journal of Mathematical Logic 22 (2022) 2250009.