Reductions Between Problems in Reverse Mathematics and Computability Theory

Denis R. Hirschfeldt

$[X]^{n}$ is the set of n-element subsets of X.
A k-coloring of $[X]^{n}$ is a map $c:[X]^{n} \rightarrow\{0,1, \ldots, k-1\}$.
$H \subseteq X$ is homogeneous for c there is an $i<k$ s.t. every set in $[H]^{n}$ has color i.
$R T_{k}^{n}$: Every k-coloring of $[\mathbb{N}]^{n}$ has an infinite homogeneous set.
$[X]^{n}$ is the set of n-element subsets of X.
A k-coloring of $[X]^{n}$ is a map $c:[X]^{n} \rightarrow\{0,1, \ldots, k-1\}$.
$H \subseteq X$ is homogeneous for c there is an $i<k$ s.t. every set in $[H]^{n}$ has color i.
$R T_{k}^{n}$: Every k-coloring of $[\mathbb{N}]^{n}$ has an infinite homogeneous set.
We can think of $R T_{k}^{n}$ as a problem: $c:[\mathbb{N}]^{n} \rightarrow\{0,1, \ldots, k-1\}$ is an instance, and an infinite homogeneous $H \subseteq \mathbb{N}$ is a solution.
$[X]^{n}$ is the set of n-element subsets of X.
A k-coloring of $[X]^{n}$ is a map $c:[X]^{n} \rightarrow\{0,1, \ldots, k-1\}$.
$H \subseteq X$ is homogeneous for c there is an $i<k$ s.t. every set in $[H]^{n}$ has color i.
$R T_{k}^{n}$: Every k-coloring of $[\mathbb{N}]^{n}$ has an infinite homogeneous set.
We can think of $R T_{k}^{n}$ as a problem: $c:[\mathbb{N}]^{n} \rightarrow\{0,1, \ldots, k-1\}$ is an instance, and an infinite homogeneous $H \subseteq \mathbb{N}$ is a solution.

Thm (Jockusch). For $n, k \geqslant 2$, computable instances of RT_{k}^{n} have Π_{n}^{0} solutions, but not always Σ_{n}^{0} solutions.
$[X]^{n}$ is the set of n-element subsets of X.
A k-coloring of $[X]^{n}$ is a map $c:[X]^{n} \rightarrow\{0,1, \ldots, k-1\}$.
$H \subseteq X$ is homogeneous for c there is an $i<k$ s.t. every set in $[H]^{n}$ has color i.
$R T_{k}^{n}$: Every k-coloring of $[\mathbb{N}]^{n}$ has an infinite homogeneous set.
We can think of $R T_{k}^{n}$ as a problem: $c:[\mathbb{N}]^{n} \rightarrow\{0,1, \ldots, k-1\}$ is an instance, and an infinite homogeneous $H \subseteq \mathbb{N}$ is a solution.

Thm (Jockusch). For $n, k \geqslant 2$, computable instances of RT_{k}^{n} have Π_{n}^{0} solutions, but not always Σ_{n}^{0} solutions.

Patey: For $n \geqslant 2$, the complexity of solutions also increases with k.

We work in second-order arithmetic, coding finite objects as numbers and countably infinite ones as sets of numbers.

We denote first-order objects by lowercase letters and second-order ones by uppercase letters.

We work in second-order arithmetic, coding finite objects as numbers and countably infinite ones as sets of numbers.

We denote first-order objects by lowercase letters and second-order ones by uppercase letters.

We focus on Π_{2}^{1} statements of the form

$$
\forall X[\varphi(X) \rightarrow \exists Y \psi(X, Y)]
$$

where φ and ψ are arithmetic.

We work in second-order arithmetic, coding finite objects as numbers and countably infinite ones as sets of numbers.

We denote first-order objects by lowercase letters and second-order ones by uppercase letters.

We focus on Π_{2}^{1} statements of the form

$$
\forall X[\varphi(X) \rightarrow \exists Y \psi(X, Y)]
$$

where φ and ψ are arithmetic.
We can think of such a statement as a problem.
An instance of this problem is an X such that $\varphi(X)$ holds.
A solution to this instance is a Y such that $\psi(X, Y)$ holds.

We work in second-order arithmetic, coding finite objects as numbers and countably infinite ones as sets of numbers.

We denote first-order objects by lowercase letters and second-order ones by uppercase letters.

We focus on Π_{2}^{1} statements of the form

$$
\forall X[\varphi(X) \rightarrow \exists Y \psi(X, Y)]
$$

where φ and ψ are arithmetic.
We can think of such a statement as a problem.
An instance of this problem is an X such that $\varphi(X)$ holds.
A solution to this instance is a Y such that $\psi(X, Y)$ holds.
P and Q will denote such problems.

Dzhafarov: P is computably reducible to Q, written $P \leqslant_{c} Q$, if

 for every instance X of P,there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X},
there is an $X \oplus \widehat{Y}$-computable solution to X.

Dzhafarov: P is computably reducible to Q, written $P \leqslant_{c} Q$, if

 for every instance X of P,there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X},
there is an $X \oplus \widehat{Y}$-computable solution to X.

Problems:
Instances:
Solutions:

P
Q

Dzhafarov: P is computably reducible to Q, written $P \leqslant_{c} Q$, if

 for every instance X of P,there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X},
there is an $X \oplus \widehat{Y}$-computable solution to X.

Problems:
Instances:
Solutions:

P
Q
X

Dzhafarov: P is computably reducible to Q, written $P \leqslant_{c} Q$, if

 for every instance X of P,there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X},
there is an $X \oplus \widehat{Y}$-computable solution to X.
Problems:
Instances:
P
Q

Solutions:

Dzhafarov: P is computably reducible to Q, written $P \leqslant_{c} Q$, if

 for every instance X of P,there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X},
there is an $X \oplus \widehat{Y}$-computable solution to X.
Problems:
P
Q
Instances:
X

Solutions:
\widehat{Y}

Dzhafarov: P is computably reducible to Q, written $P \leqslant_{c} Q$, if

 for every instance X of P,there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X},
there is an $X \oplus \widehat{Y}$-computable solution to X.
Problems:
P
Q
Instances:
X
\downarrow
Solutions:
$Y \longleftarrow \widehat{Y}$

Dzhafarov: P is computably reducible to Q, written $P \leqslant_{c} Q$, if

 for every instance X of P,there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X},
there is an $X \oplus \widehat{Y}$-computable solution to X.

Problems:
Instances:

Solutions:
P Q
\downarrow

Thm (Jockusch). $\mathrm{RT}_{k}^{1}<_{c} \mathrm{RT}_{k}^{2}<_{c} \mathrm{RT}_{k}^{3}<_{c} \mathrm{RT}_{k}^{4}<_{c} \cdots$

Dzhafarov: P is computably reducible to Q, written $P \leqslant_{c} Q$, if

 for every instance X of P,there is an X-computable instance \widehat{X} of Q s.t., for every solution \widehat{Y} to \widehat{X},
there is an $X \oplus \widehat{Y}$-computable solution to X.
Problems:
Instances:

Solutions:
Thm (Jockusch). $\mathrm{RT}_{k}^{1}<_{c} \mathrm{RT}_{k}^{2}<_{c} \mathrm{RT}_{k}^{3}<_{c} \mathrm{RT}_{k}^{4}<_{c} \cdots$
Thm (Patey). $\mathrm{RT}_{2}^{n}<_{c} \mathrm{RT}_{3}^{n}<_{c} \mathrm{RT}_{4}^{n}<_{c} \cdots$ for $n \geqslant 2$.

Weihrauch: P is Weihrauch reducible to Q, written $P \leqslant{ }_{w} Q$, if there are Turing functionals Φ and Ψ s.t.,
for every instance X of P, ϕ^{X} is an instance of Q,
and for every solution \hat{Y} to Φ^{X},
$\psi^{\chi \oplus \hat{Y}}$ is a solution to X.

Weihrauch: P is Weihrauch reducible to Q, written $P \leqslant{ }_{w} Q$, if there are Turing functionals Φ and Ψ s.t., for every instance X of P, ϕ^{X} is an instance of Q,
and for every solution \widehat{Y} to Φ^{X},
$\Psi^{X \oplus \hat{Y}}$ is a solution to X.
Problems:
Instances:

Solutions:

Weihrauch: P is Weihrauch reducible to Q, written $P \leqslant{ }_{w} Q$, if there are Turing functionals Φ and Ψ s.t., for every instance X of P, ϕ^{X} is an instance of Q,
and for every solution \widehat{Y} to Φ^{X},
$\Psi^{X \oplus \hat{Y}}$ is a solution to X.
Problems:
Instances:

Solutions:

Weihrauch: P is Weihrauch reducible to Q, written $P \leqslant{ }_{w} Q$, if there are Turing functionals Φ and Ψ s.t.,
for every instance X of P, ϕ^{X} is an instance of Q,
and for every solution \widehat{Y} to Φ^{X},
$\Psi^{X \oplus \hat{Y}}$ is a solution to X.
Problems:
Instances:
$P \quad Q$
$X \xrightarrow{\oplus} \hat{X}$

Solutions:

Weihrauch: P is Weihrauch reducible to Q, written $P \leqslant{ }_{w} Q$, if there are Turing functionals Φ and Ψ s.t.,
for every instance X of P, ϕ^{X} is an instance of Q,
and for every solution \widehat{Y} to Φ^{X},
$\Psi^{X \oplus \hat{Y}}$ is a solution to X.
Problems:
Instances:
$P \quad Q$
$X \xrightarrow{\oplus} \hat{X}$

Solutions:

Weihrauch: P is Weihrauch reducible to Q, written $P \leqslant{ }_{w} Q$, if there are Turing functionals Φ and Ψ s.t.,
for every instance X of P, ϕ^{X} is an instance of Q,
and for every solution \widehat{Y} to Φ^{X},
$\Psi^{X \oplus \hat{Y}}$ is a solution to X.
Problems:
Instances:

Solutions:

$$
\begin{array}{cccc}
P & & Q \\
X & \xrightarrow{\oplus} & \hat{X} \\
\downarrow & \psi & \\
Y & \leftarrow & \widehat{Y}
\end{array}
$$

Weihrauch: P is Weihrauch reducible to Q, written $P \leqslant{ }_{w} Q$, if there are Turing functionals Φ and Ψ s.t.,
for every instance X of P, ϕ^{X} is an instance of Q,
and for every solution \widehat{Y} to Φ^{X},
$\Psi^{X \oplus \hat{Y}}$ is a solution to X.
Problems:
Instances:

$$
\begin{array}{cccc}
P & & Q \\
X & \xrightarrow{\oplus} & \widehat{X} \\
\downarrow & \psi & \\
Y & \longleftarrow & \widehat{Y}
\end{array}
$$

Solutions:
Thm (Rakotoniaina / Patey / Hirschfeldt and Jockusch). $\mathrm{RT}_{2}^{n}<_{w} \mathrm{RT}_{3}^{n}<_{w} \mathrm{RT}_{4}^{n}<_{w} \cdots$.

A Turing ideal is a nonempty $\mathcal{I} \subseteq 2^{\mathbb{N}}$ s.t. if A is computable from $B_{0}, \ldots, B_{n} \in \mathcal{I}$, then $A \in \mathcal{I}$.

A Turing ideal is a nonempty $\mathcal{I} \subseteq 2^{\mathbb{N}}$ s.t. if A is computable from $B_{0}, \ldots, B_{n} \in \mathcal{I}$, then $A \in \mathcal{I}$.

We can think of a Turing ideal as a context for computable mathematics.

A Turing ideal is a nonempty $\mathcal{I} \subseteq 2^{\mathbb{N}}$ s.t. if A is computable from $B_{0}, \ldots, B_{n} \in \mathcal{I}$, then $A \in \mathcal{I}$.

We can think of a Turing ideal as a context for computable mathematics.

A problem $\forall X[\varphi(X) \rightarrow \exists Y \psi(X, Y)]$ holds in \mathcal{I} if

$$
\forall X \in \mathcal{I}[\varphi(X) \rightarrow \exists Y \in \mathcal{I} \psi(X, Y)] .
$$

A Turing ideal is a nonempty $\mathcal{I} \subseteq 2^{\mathbb{N}}$ s.t. if A is computable from $B_{0}, \ldots, B_{n} \in \mathcal{I}$, then $A \in \mathcal{I}$.

We can think of a Turing ideal as a context for computable mathematics.

A problem $\forall X[\varphi(X) \rightarrow \exists Y \psi(X, Y)]$ holds in \mathcal{I} if

$$
\forall X \in \mathcal{I}[\varphi(X) \rightarrow \exists Y \in \mathcal{I} \psi(X, Y)] .
$$

We say that P is ω-reducible to Q, written $P \leqslant \omega Q$, if P holds in every Turing ideal in which Q holds.

A Turing ideal is a nonempty $\mathcal{I} \subseteq 2^{\mathbb{N}}$ s.t. if A is computable from $B_{0}, \ldots, B_{n} \in \mathcal{I}$, then $A \in \mathcal{I}$.

We can think of a Turing ideal as a context for computable mathematics.

A problem $\forall X[\varphi(X) \rightarrow \exists Y \psi(X, Y)]$ holds in \mathcal{I} if

$$
\forall X \in \mathcal{I}[\varphi(X) \rightarrow \exists Y \in \mathcal{I} \psi(X, Y)] .
$$

We say that P is ω-reducible to Q, written $P \leqslant \omega Q$, if P holds in every Turing ideal in which Q holds.

Write $P \equiv_{\omega} Q$ if $P \leqslant_{\omega} Q$ and $Q \leqslant_{\omega} P$.
For a fixed n, we have $\mathrm{RT}_{j}^{n} \equiv_{\omega} \mathrm{RT}_{k}^{n}$ for all $j, k \geqslant 2$.

A Turing ideal is a nonempty $\mathcal{I} \subseteq 2^{\mathbb{N}}$ s.t. if A is computable from $B_{0}, \ldots, B_{n} \in \mathcal{I}$, then $A \in \mathcal{I}$.

We can think of a Turing ideal as a context for computable mathematics.

A problem $\forall X[\varphi(X) \rightarrow \exists Y \psi(X, Y)]$ holds in \mathcal{I} if

$$
\forall X \in \mathcal{I}[\varphi(X) \rightarrow \exists Y \in \mathcal{I} \psi(X, Y)] .
$$

We say that P is ω-reducible to Q, written $P \leqslant \omega Q$, if P holds in every Turing ideal in which Q holds.

Write $P \equiv_{\omega} Q$ if $P \leqslant_{\omega} Q$ and $Q \leqslant_{\omega} P$.
For a fixed n, we have $\mathrm{RT}_{j}^{n} \equiv_{\omega} \mathrm{RT}_{k}^{n}$ for all $j, k \geqslant 2$.
For $m, n \geqslant 3$, we have $\mathrm{RT}_{k}^{m} \equiv_{\omega} \mathrm{RT}_{k}^{n}$, but $\mathrm{RT}_{k}^{1}<_{\omega} \mathrm{RT}_{k}^{2}<_{\omega} \mathrm{RT}_{k}^{3}$. (Jockusch, Specker, Seetapun)

Hirschfeldt and Jockusch: Reduction games

These are two-player games for reducing P to Q.

Hirschfeldt and Jockusch: Reduction games

These are two-player games for reducing P to Q.

Player 1 will play a P-instance X_{0}.

Player 2 will try to obtain a solution to X_{0} by asking Player 1 to solve various Q-instances.

If Player 2 ever plays such a solution, it wins, and the game ends.

Hirschfeldt and Jockusch: Reduction games

These are two-player games for reducing P to Q.

Player 1 will play a P-instance X_{0}.

Player 2 will try to obtain a solution to X_{0} by asking Player 1 to solve various Q-instances.

If Player 2 ever plays such a solution, it wins, and the game ends.

If the game never ends then Player 1 wins.

If a player cannot make a move, the opponent wins.

The reduction game $G(Q \rightarrow P)$:

The reduction game $G(Q \rightarrow P)$:
First Move:
Player 1: A P-instance X_{0}.

The reduction game $G(Q \rightarrow P)$:

First Move:

Player 1: A P-instance X_{0}.
Player 2: Either an X_{0}-computable solution to X_{0}, or an X_{0}-computable Q-instance Y_{1}.

The reduction game $G(Q \rightarrow P)$:

First Move:

Player 1: A P-instance X_{0}.
Player 2: Either an X_{0}-computable solution to X_{0}, or an X_{0}-computable Q-instance Y_{1}.

Second Move:

Player 1: A solution X_{1} to Y_{1}.

The reduction game $G(Q \rightarrow P)$:

First Move:

Player 1: A P-instance X_{0}.
Player 2: Either an X_{0}-computable solution to X_{0}, or an X_{0}-computable Q-instance Y_{1}.

Second Move:

Player 1: A solution X_{1} to Y_{1}.
Player 2: Either an $\left(X_{0} \oplus X_{1}\right)$-computable solution to X_{0}, or an ($X_{0} \oplus X_{1}$)-computable Q-instance Y_{2}.

The reduction game $G(Q \rightarrow P)$:

First Move:

Player 1: A P-instance X_{0}.
Player 2: Either an X_{0}-computable solution to X_{0}, or an X_{0}-computable Q-instance Y_{1}.

Second Move:

Player 1: A solution X_{1} to Y_{1}.
Player 2: Either an $\left(X_{0} \oplus X_{1}\right)$-computable solution to X_{0}, or an $\left(X_{0} \oplus X_{1}\right)$-computable Q-instance Y_{2}.

Third Move:
Player 1: A solution X_{2} to Y_{2}.
Player 2: Either an $\left(X_{0} \oplus X_{1} \oplus X_{2}\right)$-computable solution to X_{0}, or an ($X_{0} \oplus X_{1} \oplus X_{2}$)-computable Q-instance Y_{3}.

Thm (Hirschfeldt and Jockusch). If $P \leqslant \omega Q$ then Player 2 has a winning strategy for $G(Q \rightarrow P)$. Otherwise, Player 1 has a winning strategy for $G(Q \rightarrow P)$.

Thm (Hirschfeldt and Jockusch). If $P \leqslant \omega Q$ then Player 2 has a winning strategy for $G(Q \rightarrow P)$. Otherwise, Player 1 has a winning strategy for $G(Q \rightarrow P)$.
P is generalized Weihrauch reducible to Q, written $P \leqslant_{\mathrm{gW}} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Thm (Hirschfeldt and Jockusch). If $P \leqslant \omega Q$ then Player 2 has a winning strategy for $G(Q \rightarrow P)$. Otherwise, Player 1 has a winning strategy for $G(Q \rightarrow P)$.
P is generalized Weihrauch reducible to Q, written $P \leqslant_{\mathrm{gw}} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Neumann and Pauly independently gave an equivalent definition to gW-reducibility.

Thm (Hirschfeldt and Jockusch). If $P \leqslant_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \rightarrow P)$. Otherwise, Player 1 has a winning strategy for $G(Q \rightarrow P)$.
P is generalized Weihrauch reducible to Q, written $P \leqslant_{\mathrm{gw}} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Neumann and Pauly independently gave an equivalent definition to gW-reducibility.

For a fixed n, we have $\mathrm{RT}_{j}^{n} \equiv_{\mathrm{gW}} \mathrm{RT}_{k}^{n}$ for all $j, k \geqslant 2$.

Thm (Hirschfeldt and Jockusch). If $P \leqslant \omega Q$ then Player 2 has a winning strategy for $G(Q \rightarrow P)$. Otherwise, Player 1 has a winning strategy for $G(Q \rightarrow P)$.
P is generalized Weihrauch reducible to Q, written $P \leqslant_{\mathrm{gw}} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Neumann and Pauly independently gave an equivalent definition to gW-reducibility.

For a fixed n, we have $\mathrm{RT}_{j}^{n} \equiv_{\mathrm{gW}} \mathrm{RT}_{k}^{n}$ for all $j, k \geqslant 2$.
Thm (Hirschfeldt and Jockusch). For $m, n \geqslant 3$, we have $\mathrm{RT}_{k}^{m} \equiv{ }_{\mathrm{gw}} \mathrm{RT}_{k}^{n}$.

Thm (Hirschfeldt and Jockusch). If $P \leqslant \omega Q$ then Player 2 has a winning strategy for $G(Q \rightarrow P)$. Otherwise, Player 1 has a winning strategy for $G(Q \rightarrow P)$.
P is generalized Weihrauch reducible to Q, written $P \leqslant_{\mathrm{gw}} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Neumann and Pauly independently gave an equivalent definition to gW-reducibility.

For a fixed n, we have $\mathrm{RT}_{j}^{n} \equiv_{\mathrm{gW}} \mathrm{RT}_{k}^{n}$ for all $j, k \geqslant 2$.
Thm (Hirschfeldt and Jockusch). For $m, n \geqslant 3$, we have $\mathrm{RT}_{k}^{m} \equiv{ }_{\mathrm{g} W} \mathrm{RT}_{k}^{n}$.

Let ID be $\forall X \exists Y Y=X$. Then $\mathrm{RT}_{k}^{1} \leqslant_{c}$ ID but $\mathrm{RT}_{k}^{1} \not{ }_{\mathrm{w}}$ ID.

Thm (Hirschfeldt and Jockusch). If $P \leqslant_{\omega} Q$ then Player 2 has a winning strategy for $G(Q \rightarrow P)$. Otherwise, Player 1 has a winning strategy for $G(Q \rightarrow P)$.
P is generalized Weihrauch reducible to Q, written $P \leqslant_{\mathrm{gW}} Q$, if Player 2 has a computable winning strategy for $G(Q \rightarrow P)$.

Neumann and Pauly independently gave an equivalent definition to gW-reducibility.

For a fixed n, we have $\mathrm{RT}_{j}^{n} \equiv_{\mathrm{gw}} \mathrm{RT}_{k}^{n}$ for all $j, k \geqslant 2$.
Thm (Hirschfeldt and Jockusch). For $m, n \geqslant 3$, we have $\mathrm{RT}_{k}^{m} \equiv_{\mathrm{gW}} \mathrm{RT}_{k}^{n}$.

Let ID be $\forall X \exists Y Y=X$. Then $\mathrm{RT}_{k}^{1} \leqslant_{c}$ ID but $\mathrm{RT}_{k}^{1} \not{ }_{w} \mathrm{ID}$.
Thm (Hirschfeldt and Jockusch). $\mathrm{RT}_{k}^{1}{\nless{ }_{8 W}}$ ID.

Write $P \leqslant_{\omega}^{n} Q$ if Player 2 has a winning strategy for $G(Q \rightarrow P)$ that wins in at most $n+1$ many moves, and similarly for gW .

Write $P \leqslant_{\omega}^{n} Q$ if Player 2 has a winning strategy for $G(Q \rightarrow P)$ that wins in at most $n+1$ many moves, and similarly for gW .

Theorem (Hirschfeldt and Jockusch). For $n \geqslant 3$ and $j \geqslant 1$, if

$$
n+(j-1)(n-2)<m \leqslant n+j(n-2)
$$

then

$$
\mathrm{RT}_{k}^{m} \leqslant_{\mathrm{gW}}^{j+1} \mathrm{RT}_{k}^{n} \quad \text { but } \quad \mathrm{RT}_{k}^{m} \not \star_{\omega}^{j} \mathrm{RT}_{k}^{n} .
$$

Write $P \leqslant_{\omega}^{n} Q$ if Player 2 has a winning strategy for $G(Q \rightarrow P)$ that wins in at most $n+1$ many moves, and similarly for gW .

Theorem (Hirschfeldt and Jockusch). For $n \geqslant 3$ and $j \geqslant 1$, if

$$
n+(j-1)(n-2)<m \leqslant n+j(n-2)
$$

then

$$
\mathrm{RT}_{k}^{m} \leqslant_{\mathrm{gW}}^{j+1} \mathrm{RT}_{k}^{n} \quad \text { but } \quad \mathrm{RT}_{k}^{m} \not \star_{\omega}^{j} \mathrm{RT}_{k}^{n} .
$$

Theorem (Hirschfeldt and Jockusch). For $j \geqslant 2$ and $j^{m}<k \leqslant j^{m+1}$,

$$
\mathrm{RT}_{k}^{1} \leqslant_{\mathrm{gW}}^{m+1} \mathrm{RT}_{j}^{1} \quad \text { but } \quad \mathrm{RT}_{k}^{1} \not \Varangle_{\mathrm{gW}}^{m} \mathrm{RT}_{j}^{1} .
$$

Write $P \leqslant_{\omega}^{n} Q$ if Player 2 has a winning strategy for $G(Q \rightarrow P)$ that wins in at most $n+1$ many moves, and similarly for gW .

Theorem (Hirschfeldt and Jockusch). For $n \geqslant 3$ and $j \geqslant 1$, if

$$
n+(j-1)(n-2)<m \leqslant n+j(n-2)
$$

then

$$
\mathrm{RT}_{k}^{m} \leqslant_{\mathrm{gW}}^{j+1} \mathrm{RT}_{k}^{n} \quad \text { but } \quad \mathrm{RT}_{k}^{m} \not \star_{\omega}^{j} \mathrm{RT}_{k}^{n} .
$$

Theorem (Hirschfeldt and Jockusch). For $j \geqslant 2$ and $j^{m}<k \leqslant j^{m+1}$,

$$
\mathrm{RT}_{k}^{1} \leqslant_{\mathrm{gW}}^{m+1} \mathrm{RT}_{j}^{1} \quad \text { but } \quad \mathrm{RT}_{k}^{1} \not \Varangle_{\mathrm{gW}}^{m} \mathrm{RT}_{j}^{1} .
$$

Patey determined the least m s.t. $\mathrm{RT}_{k}^{n} \leqslant \omega_{\omega}^{m} \mathrm{RT}_{j}^{n}$ for $n \geqslant 2$ and $j<k$.
For $n \geqslant 3$, this m is always 2 . For $n=2$ it goes to infinity with k.

$R T^{n}$ is $\forall k \mathrm{RT}_{k}^{n}$.

$R T$ is $\forall n \mathrm{RT}^{n}$.

$R T^{n}$ is $\forall k \mathrm{RT}_{k}^{n}$.

$R T$ is $\forall n \mathrm{RT}^{n}$.
$\mathrm{RT} \leqslant{ }_{\omega} \mathrm{RT}_{2}^{3}$ but $\mathrm{RT} \not{\underset{\omega}{\omega}}^{j} \mathrm{RT}_{2}^{3}$ for all j.

$R T^{n}$ is $\forall k \mathrm{RT}_{k}^{n}$.

$R T$ is $\forall n \mathrm{RT}^{n}$.
$\mathrm{RT} \leqslant{ }_{\omega} \mathrm{RT}_{2}^{3}$ but $\mathrm{RT} \not{\underset{\omega}{\omega}}^{j} \mathrm{RT}_{2}^{3}$ for all j.
$\mathrm{RT}^{1} \leqslant_{\mathrm{gW}} \mathrm{RT}_{2}^{1}$ but $\mathrm{RT}^{1} \Varangle_{\mathrm{gW}^{j}} \mathrm{RT}_{2}^{1}$ for all j.

In reverse mathematics, we work in a two-sorted first-order language, with the usual symbols of first-order arithmetic and ϵ.

Full second-order arithmetic consists of the basic axioms of first-order arithmetic, induction, and comprehension.

In reverse mathematics, we work in a two-sorted first-order language, with the usual symbols of first-order arithmetic and ϵ.

Full second-order arithmetic consists of the basic axioms of first-order arithmetic, induction, and comprehension.

The usual base theory $R C A_{0}$ consists of the basic axioms, Δ_{1}^{0}-comprehension:

$$
\forall n[\varphi(n) \leftrightarrow \psi(n)] \rightarrow \exists X \forall n[n \in X \leftrightarrow \varphi(n)]
$$

for all φ, ψ s.t. φ is Σ_{1}^{0} and ψ is Π_{1}^{0}, and X is not free in φ, and Σ_{1}^{0}-induction:

$$
(\varphi(0) \wedge \forall n[\varphi(n) \rightarrow \varphi(n+1)]) \rightarrow \forall n \varphi(n)
$$

for all Σ_{1}^{0} formulas φ.

A model \mathcal{M} in the language of second-order arithmetic consists of a first-order part \mathcal{N} and a second-order part $\mathcal{S} \subseteq 2^{|\mathcal{N}|}$.

A model \mathcal{M} in the language of second-order arithmetic consists of a first-order part \mathcal{N} and a second-order part $\mathcal{S} \subseteq 2^{|\mathcal{N}|}$.

If \mathcal{N} is standard, we call \mathcal{M} an ω-model and identify it with \mathcal{S}.

A model \mathcal{M} in the language of second-order arithmetic consists of a first-order part \mathcal{N} and a second-order part $\mathcal{S} \subseteq 2^{|\mathcal{N}|}$.

If \mathcal{N} is standard, we call \mathcal{M} an ω-model and identify it with \mathcal{S}.

An ω-model satisfies RCA $_{0}$ iff it is a Turing ideal.

A model \mathcal{M} in the language of second-order arithmetic consists of a first-order part \mathcal{N} and a second-order part $\mathcal{S} \subseteq 2^{|\mathcal{N}|}$.

If \mathcal{N} is standard, we call \mathcal{M} an ω-model and identify it with \mathcal{S}.

An ω-model satisfies RCA_{0} iff it is a Turing ideal.

If $\mathrm{RCA}_{0} \vdash Q \rightarrow P$ then $P \leqslant \omega$, but not always vice-versa.

A model \mathcal{M} in the language of second-order arithmetic consists of a first-order part \mathcal{N} and a second-order part $\mathcal{S} \subseteq 2^{|\mathcal{N}|}$.

If \mathcal{N} is standard, we call \mathcal{M} an ω-model and identify it with \mathcal{S}.

An ω-model satisfies RCA_{0} iff it is a Turing ideal.

If $\mathrm{RCA}_{0} \vdash Q \rightarrow P$ then $P \leqslant \omega$, but not always vice-versa.
$\mathrm{RT} \leqslant \omega \mathrm{RT}_{2}^{3}$ but $\mathrm{RCA}_{0} \nvdash \mathrm{RT}_{2}^{3} \rightarrow \mathrm{RT}$.

Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes defined reduction games over models of $R C A_{0}$.

Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes defined reduction games over models of $R C A_{0}$.

The notions of instance and solution of a problem still make sense over any structure \mathcal{N} in the language of first-order arithmetic.

For $X_{0}, \ldots, X_{n} \subseteq|\mathcal{N}|$, let $\mathcal{N}\left[X_{0}, \ldots, X_{n}\right]=(\mathcal{N}, S)$ where S consists of all subsets of $|\mathcal{N}|$ that are Δ_{1}^{0}-definable from parameters in $|\mathcal{N}| \cup\left\{X_{0}, \ldots, X_{n}\right\}$.

The RCA_{0}-reduction game $G^{\mathrm{RCA}_{0}}(Q \rightarrow P)$:

The RCA_{0}-reduction game $G^{\mathrm{RCA}_{0}}(Q \rightarrow P)$:
First Move:
Player 1: A model (\mathcal{N}, S) of RCA_{0} with $|\mathcal{N}|$ countable, and a P-instance $X_{0} \in S$.

The RCA_{0}-reduction game $G^{\mathrm{RCA}_{0}}(Q \rightarrow P)$:
First Move:
Player 1: A model (\mathcal{N}, S) of RCA_{0} with $|\mathcal{N}|$ countable, and a P-instance $X_{0} \in S$.

Player 2: Either a solution to X_{0} in $\mathcal{N}\left[X_{0}\right]$, or a Q-instance $Y_{1} \in \mathcal{N}\left[X_{0}\right]$.

The RCA_{0}-reduction game $G^{\mathrm{RCA}_{0}}(Q \rightarrow P)$:
First Move:
Player 1: A model (\mathcal{N}, S) of RCA_{0} with $|\mathcal{N}|$ countable, and a P-instance $X_{0} \in S$.

Player 2: Either a solution to X_{0} in $\mathcal{N}\left[X_{0}\right]$, or a Q-instance $Y_{1} \in \mathcal{N}\left[X_{0}\right]$.

Second Move:

Player 1: A solution X_{1} to Y_{1} in S.

The RCA_{0}-reduction game $G^{\mathrm{RCA}_{0}}(Q \rightarrow P)$:
First Move:
Player 1: A model (\mathcal{N}, S) of RCA_{0} with $|\mathcal{N}|$ countable, and a P-instance $X_{0} \in S$.

Player 2: Either a solution to X_{0} in $\mathcal{N}\left[X_{0}\right]$, or a Q-instance $Y_{1} \in \mathcal{N}\left[X_{0}\right]$.

Second Move:

Player 1: A solution X_{1} to Y_{1} in S.
Player 2: Either a solution to X_{0} in $\mathcal{N}\left[X_{0}, X_{1}\right]$, or a Q-instance $Y_{2} \in \mathcal{N}\left[X_{0}, X_{1}\right]$.

The RCA_{0}-reduction game $G^{\mathrm{RCA}_{0}}(Q \rightarrow P)$:
First Move:
Player 1: A model (\mathcal{N}, S) of RCA_{0} with $|\mathcal{N}|$ countable, and a P-instance $X_{0} \in S$.

Player 2: Either a solution to X_{0} in $\mathcal{N}\left[X_{0}\right]$, or a Q-instance $Y_{1} \in \mathcal{N}\left[X_{0}\right]$.

Second Move:

Player 1: A solution X_{1} to Y_{1} in S.
Player 2: Either a solution to X_{0} in $\mathcal{N}\left[X_{0}, X_{1}\right]$, or a Q-instance $Y_{2} \in \mathcal{N}\left[X_{0}, X_{1}\right]$.

Third Move:

Player 1: A solution X_{2} to Y_{2} in S.
Player 2: Either a solution to X_{1} in $\mathcal{N}\left[X_{0}, X_{1}, X_{2}\right]$, or a Q-instance $Y_{3} \in \mathcal{N}\left[X_{0}, X_{1}, X_{2}\right]$.

Thm (Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes). If $\mathrm{RCA}_{0} \vdash Q \rightarrow P$ then Player 2 has a winning strategy for $G^{R C A_{0}}(Q \rightarrow P)$. Otherwise, Player 1 does.

Thm (Hirschfeldt and Jockusch / Dzhafarov, Hirschfeldt, and Reitzes). If $\mathrm{RCA}_{0} \vdash Q \rightarrow P$ then Player 2 has a winning strategy for $G^{R^{R C A_{0}}}(Q \rightarrow P)$. Otherwise, Player 1 does.

Thm (Dzhafarov, Hirschfeldt, and Reitzes). If $\mathrm{RCA}_{0} \vdash Q \rightarrow P$ then there is an $n \in \omega$ s.t. Player 2 has a winning strategy for $G^{R C A_{0}}(Q \rightarrow P)$ that wins in at most n many moves.

The least such n can be seen as measuring the minimal number of applications of Q needed in proving P over RCA_{0}.
P is generalized Weihrauch reducible to Q over $R C A_{0}$, written $P \leqslant \leqslant_{\mathrm{gW}}^{\mathrm{RCA}} Q$, if Player 2 has a computable (i.e., Δ_{1}^{0}) winning strategy for $G^{\mathrm{RCA}_{0}}(Q \rightarrow P)$.
P is generalized Weihrauch reducible to Q over $R C A_{0}$, written $P \leqslant \leqslant_{\mathrm{gW}}^{\mathrm{RCA}} Q$, if Player 2 has a computable (i.e., Δ_{1}^{0}) winning strategy for $G^{\mathrm{RCA}_{0}}(Q \rightarrow P)$.

Let $j, k \geqslant 2$. Then $\mathrm{RT}^{1} \equiv_{\mathrm{gW}} \mathrm{RT}_{j}^{1} \equiv_{\mathrm{gW}} \mathrm{RT}_{k}^{1}$, and $\mathrm{RT}_{j}^{1} \equiv_{\mathrm{gW}}^{\mathrm{RCA}} \mathrm{RT}_{k}^{1}$, but Hirst showed that $R C A_{0} \nvdash R T^{1}$, so $R T^{1} \not \underbrace{R C A_{0}}_{\mathrm{gw}} R T_{k}^{1}$.
P is generalized Weihrauch reducible to Q over $R C A_{0}$, written $P \leqslant \leqslant_{\mathrm{gW}}^{\mathrm{RCA}} Q$, if Player 2 has a computable (i.e., Δ_{1}^{0}) winning strategy for $G^{\mathrm{RCA}_{0}}(Q \rightarrow P)$.

Let $j, k \geqslant 2$. Then $\mathrm{RT}^{1} \equiv_{\mathrm{gW}} \mathrm{RT}_{j}^{1} \equiv_{\mathrm{gW}} \mathrm{RT}_{k}^{1}$, and $\mathrm{RT}_{j}^{1} \equiv_{\mathrm{gW}}^{\mathrm{RCA}} \mathrm{RT}_{k}^{1}$, but Hirst showed that $R C A_{0} \nvdash R T^{1}$, so $R T^{1} \not{ }_{\mathrm{gW}}^{R C A_{0}} R T_{k}^{1}$.

Theorem (Dzhafarov, Hirschfeldt, and Reitzes). If $P \leqslant_{\mathrm{gW}}^{\mathrm{RCA}} Q$ then there is an $n \in \omega$ s.t. Player 2 has a computable winning strategy for $G^{\mathrm{RCA}_{0}}(Q \rightarrow P)$ that wins in at most n many moves.
P is generalized Weihrauch reducible to Q over $R C A_{0}$, written $P \leqslant \leqslant_{\mathrm{gW}}^{\mathrm{RCA}} Q$, if Player 2 has a computable (i.e., Δ_{1}^{0}) winning strategy for $G^{\operatorname{RCA}_{0}}(Q \rightarrow P)$.

Let $j, k \geqslant 2$. Then $\mathrm{RT}^{1} \equiv_{\mathrm{gW}} \mathrm{RT}_{j}^{1} \equiv_{\mathrm{gW}} \mathrm{RT}_{k}^{1}$, and $\mathrm{RT}_{j}^{1} \equiv_{\mathrm{gW}}^{\mathrm{RCA}} \mathrm{RT}_{k}^{1}$, but Hirst showed that $R C A_{0} \nvdash R T^{1}$, so $R T^{1} \not{ }_{\mathrm{gW}}^{R C A_{0}} R T_{k}^{1}$.

Theorem (Dzhafarov, Hirschfeldt, and Reitzes). If $P \leqslant_{\mathrm{gW}}^{\mathrm{RCA}} Q$ then there is an $n \in \omega$ s.t. Player 2 has a computable winning strategy for $G^{R C A_{0}}(Q \rightarrow P)$ that wins in at most n many moves.

We can also define computable reducibility and Weihrauch reducibility over RCA_{0} using 2-move games.

Reductions Between Problems in
 Reverse Mathematics and Computability Theory

Denis R. Hirschfeldt

D. R. Hirschfeldt and C. G. Jockusch, Jr., On Notions of Computability-Theoretic Reduction between Π_{2}^{1} Principles, Journal of Mathematical Logic 16 (2016) 1650002.
D. D. Dzhafarov, D. R. Hirschfeldt, and S. C. Reitzes, Reduction Games, Provability, and Compactness, Journal of Mathematical Logic 22 (2022) 2250009.

