On the reverse philosophy of the sorites paradox

University of Connecticut 2 December 2022

Walter Dean

University of Warwick & Institut d'études avancées de Paris

Outline

Part One: On "reverse philosophy".

▶ What? The application of *reverse mathematics* to arguments in contemporary analytic philosophy.

Continuous sorites

Why? The Carrot and The Stick.

Part Two: The sorites as an example of reverse philosophy.

- ▶ Role of mathematical representation / *measurement theory*.
- Different forms of the sorites:
 - ightharpoonup Conditional for $heap: I\Delta_0 + Exp$
 - Conditional for tall: RCA₀
 - Continuous for red: ACAn
 - ► Topological/vicinity-based for game: ACA₀ (at least)
- Morals and responses illustrating the utility of the methodology.

The basic phenomenon and reverse mathematics

- ▶ The "basic phenomenon": existence of *philosophical arguments* which contain *mathematical theorems* amongst their premises.
- Canonical example: Kreisel's squeezing argument.*

analysandum

 P_1 : If $\Gamma \vdash \varphi$, then the argument $\Gamma : \varphi$ is intuitively valid.

 P_2 : If the argument $\Gamma : \varphi$ is intuitively valid, then $\Gamma \models \varphi$.

 P_3 : If $\Gamma \models \varphi$, then $\Gamma \vdash \varphi$.

Preliminaries

0000000

C: The argument $\Gamma : \varphi$ is intuitively valid if and only if $\Gamma \models \varphi$.

- ▶ P₃ is the Gödel Completeness Theorem (GCT) for FOL.
 - \triangleright Expressible in the *language of 2nd-order arithmetic* \mathcal{L}_2 .
 - $ightharpoonup RCA_0 \vdash GCT \leftrightarrow WKL$
 - \triangleright WKL: "every infinite subtree of $2^{\mathbb{N}}$ has an infinite path".
 - ▶ This implies the existence of non-computable sets.
 - Interested parties: Kreisel, Quine, Dummett, Troelstra, van Dalen, Etchemendy, Boolos, Field, Halbach, Beall (?) ...

^{*}Cf. also Kreisel 1960 on HYP = predicative = Δ_1^1 via Kleene's Theorem.

Why care?

- ► The basic phenomenon is **pervasive** e.g.
 - Philosophy of mathematics: Löwenheim-Skolem theorem and Dedekind/Zermelo categoricity theorems ...
 - Philosophy of logic: Theories of truth, fixed point theorems, . . .

Continuous sorites

- Philosophy of science: Beth's theorem, interpretability, . . .
- Metaphysics: Modal logic, mereology, . . .
- Formal epistemology: Dutch book theorems, . . .
- Political philosophy/ethics: Impossibility theorems (e.g. Arrow, Gibbard-Satterthwaite), Harsanyi's Util. Theorem, ...
- Philosophy of language/semantics: Representation theorems (e.g. Hölder, Debreu), Montague grammar/types, ...
- No systematic accounting has been made. (?)
- Reverse math is well-suited to the relevant "ordinary" maths.
- ► To philosophy: **methodological benefits** / **costs** . . .

Preliminaries

0000000

- ► The basic phenomenon is **pervasive** e.g.
 - Philosophy of mathematics: Löwenheim-Skolem theorem, Dedekind/Zermelo categoricity theorems, ...
 - Philosophy of logic: Theories of truth, fixed point theorems, . . .
 - Philosophy of science: Beth's theorem, interpretability, . . .
 - Metaphysics: Modal logic, mereology, . . .
 - Formal epistemology: Dutch book theorems, . . .
 - Political philosophy/ethics : Impossibility theorems (e.g. Arrow, Gibbard-Satterthwaite), Harsanyi's Util. Theorem, ...
 - Philosophy of language/semantics: Representation theorems (e.g. Hölder, Debreu), Montague grammar/types, ...
- No systematic accounting has been made. (?)
- Reverse math is well-suited to the relevant "ordinary" maths.
- To reverse mathematics: **New sources of reversals.**

Preliminaries

The Carrot and The Stick

- ► The Carrot:
 - Discover premises equivalent to principles whose strength we can analyze via the methods of **Reverse Mathematics**.

Continuous sorites

- So arguments have more structure than realized e.g. novel rhetorical options, idealizations made explicit.
- A revitalization of the *Hilbert Program* within philosophy.
 - Arithmetic/computability theory rather than set theory.
 - Solutions to philosophical problems within (classical) mathematics rather than (non-classical) logic.
- ► The Stick:
 - A proponent of an argument is someone who wishes to use it to infer its conclusion from its premise.
 - Such a theorist is thus committed to its soundness.
 - ▶ If $B \vdash P_i \leftrightarrow \Phi_i$, they are also committed to the *truth* of Φ_i .
 - A novel philosophical indispensability argument.
 - ► The proponents of certain "fancy" arguments in contemporary analytic philosophy have mathematical commitments.
 - ► So there is a tension between "fancy analytic philosophy" and nominalism/fictionalism.

Reverse philosophical analysis

Preliminaries

0000000

- Step 1 : Take an argument $\Gamma : \varphi$ "from the literature".
- Step 2: Regiment the argument in *standard form*.

```
(Philosophical premise)
P_i \mapsto \Pi_i \Leftrightarrow \Phi_i (Mathematical/mixed principle)
                           (Philosophical conclusion)
```

- Step 3: Formalize the relevant mathematical and mixed premises P_i as statements Π_i in \mathcal{L} .
- Step 4 : Determine if Π_i reverses to a recognized mathematical principle Φ_i over a **base theory** B – i.e. B $\vdash \Pi_i \leftrightarrow \Phi_i$?
- Step 5 : Conclude (via an indispensability-like argument) that accepting Φ_i is thereby a condition for accepting the argument.
- Step 6: Assess the philosophical/methodological consequences.

- ► A generic reverse mathematical program consists in:
 - ightharpoonup An identification of a language $\mathcal L$ and a base theory B.
 - ▶ Some "ordinary theorems" Ψ and "axioms" Φ s.t. $\mathsf{B} \vdash \Psi \leftrightarrow \Phi$.
 - ▶ E.g. $ZF \vdash WO \leftrightarrow AC$.
- ► The *specific* Reverse Mathematical program of SoSOA:
 - $ightharpoonup \mathcal{L}$ is $\mathcal{L}_2 = \{0, 1, +, \times, <\}$ with 2nd-order variables, quantifiers
 - ightharpoonup B is RCA₀ = Q + Ind(Σ_1^0) + Δ_1^0 -CA
 - $ightharpoonup \Delta_1^0$ -CA is the comprehension scheme limited to Δ_1^0 -formulas.
 - ► The minimal ω -model of RCA₀ is $\mathcal{R} = \langle \mathbb{N}, \text{Rec}, 0, 1, +, \times, < \rangle$ with REC = the *computable* sets $X \subseteq \mathbb{N}$.
 - ightharpoonup ACA₀ = RCA₀ + ACA
 - ► ACA is the comprehension scheme limited to *arithmetical formulas* (i.e. 1st-order with 2nd-order parameters).
 - ▶ The minimal ω-model of RCA₀ is $\mathcal{A} = \langle \mathbb{N}, \operatorname{Arith}, 0, 1, +, \times, < \rangle$ with $\operatorname{Arith} = \operatorname{the}$ arithmetically definable $X \subset \mathbb{N}$.
 - $ightharpoonup \operatorname{RCA}_0^* \subsetneq \operatorname{RCA}_0 \subsetneq \operatorname{WKL}_0 \subsetneq \operatorname{ACA}_0^- \subsetneq \operatorname{ATR}_0 \subsetneq \Pi_1^1 \operatorname{-CA}_0 \subsetneq \dots$
 - ▶ Is this sequence *canonical*? What does it *track*?
 - See, e.g., D. & Walsh 2017, Eastaugh 2019.

		Continuous sorites			
Arguments and reversals					
Argument	Principle/Theorem	Theory			
Finite democracy	Finite Arrow's Theorem	$I\Delta_0 + exp = EFA$			
"Justification of deduction"	Soundness of FOL	I Δ_0 + suрехр			
Conditional sorites	Hölder's Theorem [±]	RCA ₀			
Dutch book	Hyperplane Separation	RCA_0 or WKL_0			
Squeezing validity	Completeness of FOL	WKL ₀			
Categority of ${\mathbb N}$	Dedekind's Theorem	WKL_0			
Nominalization	Arithmetized Completeness	$Con(N^*) + WKL_0$			
Infinite democracy	Fishburn/K&S Thms	ACA_0			
Continuous sorites	Sup/Inf Principles	ACA_0			
Squeezing predicativity	Kleene's Theorem	ACA_0			
Metaphysical Universality	Exist canonical model	ACA_0			
Untyped truth	Exist least fixed point	Π^1_1 -CA $_0$			
Field's theory of truth		Π^1_3 -CA $_0$	8/29		

Forms of the sorites paradox

Form	Ex.	Theorem/Principle	System	Reference	
QF-conditional	heap	Cut (?)	Propositional logic	e.g. Sazonov 1995	
∀-cond. collective	heap	$\forall x \exists y (2^x = y)$	$I\Delta_0 + Exp$	D. 2018	
Inductive	heap	$\operatorname{Ind}(\mathcal{L}_P)$	$I\Delta_0/\mathcal{L}_P + Exp$	D. 2018	
Line drawing	heap	$LNP(\mathcal{L}_P)$	$I\Delta_0/\mathcal{L}_P + Exp$	D. 2018	
∀-cond. graded	tall	Hölder's Theorem [±]	RCA_0	Solomon 1998/9	
Continuous	green	Sup + Debreu	ACA_0	Weber&Colyvan 2011/21	
Continuous	tall	Sup + Hölder	ACA_0	Weber&Colyvan 2011/21	
Topological	game	$Conn+LC \Rightarrow GC$	ACA ₀ (at least)	Weber&Colyvan 2011/21	
Vicinity-based	???	3.5 of D&D 2010	ACA ₀	Dzhafarov 2019	

Forms of the sorites paradox

Form	Ex.	Theorem/Principle	System	Reference	
QF-conditional	heap	Cut (?)	Propositional logic	e.g. Sazonov 1995	
∀-cond. collective	heap	$\forall x \exists y (2^x = y)$	$I\Delta_0 + Exp$	D. 2018	
Inductive	heap	$\operatorname{Ind}(\mathcal{L}_P)$	$I\Delta_0/\mathcal{L}_P + Exp$	D. 2018	
Line drawing	heap	$LNP(\mathcal{L}_P)$	$I\Delta_0/\mathcal{L}_P + Exp$	D. 2018	
\forall -cond. graded	tall	Hölder's Theorem±	RCA_0	Solomon 1998/9 ←	
Continuous	green	Sup + Debreu	ACA_0	Weber&Colyvan 2011/21 ←	
Continuous	tall	Sup + Hölder	ACA ₀	Weber&Colyvan 2011/21 ←	
Topological	game	$Conn + LC \Rightarrow GC$	ACA ₀ (at least)	Weber&Colyvan 2011/21	
Vicinity-based	???	3.5 of D&D 2010	ACA ₀	Dzhafarov 2019	
∀-cond. collective Inductive Line drawing ∀-cond. graded Continuous Continuous Topological	heap heap heap tall green tall game		$\begin{split} & I\Delta_0 + \operatorname{Exp} \\ & I\Delta_0/\mathcal{L}_P + \operatorname{Exp} \\ & I\Delta_0/\mathcal{L}_P + \operatorname{Exp} \\ & I\Delta_0/\mathcal{L}_P + \operatorname{Exp} \\ & \operatorname{RCA}_0 \\ & \operatorname{ACA}_0 \\ & \operatorname{ACA}_0 \text{ (at least)} \end{split}$	D. 2018 ← D. 2018 D. 2018 D. 2018 Solomon 1998/9 ← Weber&Colyvan 2011/21 ← Weber&Colyvan 2011/21 ← Weber&Colyvan 2011/21	

Form	Ex.	Theorem/Principle	System	Reference	
QF-conditional	heap	Cut (?)	Propositional logic	e.g. Sazonov 1995	
∀-cond. collective	heap	$\forall x \exists y (2^x = y)$	$I\Delta_0 + Exp$	D. 2018 ←	
Inductive	heap	$\operatorname{Ind}(\mathcal{L}_P)$	$I\Delta_0/\mathcal{L}_P + Exp$	D. 2018	
Line drawing	heap	$LNP(\mathcal{L}_P)$	$I\Delta_0/\mathcal{L}_P + Exp$	D. 2018	
∀-cond. graded	tall	Hölder's Theorem $^\pm$	RCA_0	Solomon 1998/9 ←	
Continuous	green	Sup + Debreu	ACA_0	Weber&Colyvan 2011/21 ←	
Continuous	tall	$Sup + H\"{older}$	ACA ₀	Weber&Colyvan 2011/21 ←	
Topological	game	$Conn + LC \Rightarrow GC$	ACA ₀ (at least)	Weber&Colyvan 2011/21	
Vicinity-based	???	3.5 of D&D 2010	ACA ₀	Dzhafarov 2019	

Continuous sorites

Please keep in mind:

- ▶ I don't really care about the sorites / vagueness / etc.
 - (If you don't like this example, we've got many others ...)
- ▶ My goal is convincing "paradox mongers" (you?) that regarding the sorites as a classically valid argument has mathematical commitments.
 - (Which they are welcome to deny ...)
- ▶ This requires attending to details of the *linguistic formulations* of the various forms.

 P_1 : $\neg \text{Heap}(a_0)$

 $P_2: \forall i(\neg \text{Heap}(a_i) \rightarrow \neg \text{Heap}(a_{i+1}))$

C : \neg Heap(a_{10000})


```
P_1 : \neg \text{Heap}(a_0)
```

 $P_2: \forall i(\neg \text{Heap}(a_i) \rightarrow \neg \text{Heap}(a_{i+1})) \in \textbf{Not well-formed}$

 $\mathrm{C}: \neg \mathrm{Heap}(a_{10000})$

 P_1 : $\neg \text{Heap}(a_0)$ Π_1 : $\neg \text{Heap}^*(0)$

 $\mathsf{P}_2: \forall i (\neg \mathsf{Heap}(a_i) \to \neg \mathsf{Heap}(a_{i+1})) \ \Pi_2: \forall x (\neg \mathsf{Heap}^*(x) \to \neg \mathsf{Heap}^*(x+1))$

C : $\neg \text{Heap}(a_{10000})$ K : $\neg \text{Heap}^*(\overline{10000})$

 $\operatorname{Heap}^*(n)$ iff a_n is composed of n units (grains)

$$\begin{array}{ll} \mathbf{P}_1: \neg \mathrm{Heap}(a_0) & \Pi_1: \neg \mathrm{Heap}(a_0) \\ \mathbf{P}_2: \forall i (\neg \mathrm{Heap}(a_i) \rightarrow \neg \mathrm{Heap}(a_{i+1})) & \Pi_2: \forall x \forall y ((\neg \mathrm{Heap}(x) \land f(x) = y) \rightarrow \\ \mathbf{C}: \neg \mathrm{Heap}(a_{10000}) & \neg \mathrm{Heap}(f^{-1}(y+1))) \\ & \mathbf{K}: \neg \mathrm{Heap}(a_{10000}) \end{array}$$

For all $a \in A$, define f(a) = n iff a is composed of n units.

 $a_0 \prec a_1 \prec a_2 \prec a_3 \prec a_4 \prec a_5 \prec a_6 \prec a_7 \prec a_8 \prec a_9 \prec a_{10}$

Preliminaries

Universal conditional sorites for collective nouns

$$\begin{array}{ll} \mathbf{P}_1: \neg \mathrm{Heap}(a_0) & \Pi_1: \neg \mathrm{Heap}(a_0) \\ \mathbf{P}_2: \overline{\forall i} (\neg \mathrm{Heap}(a_i) \rightarrow \neg \mathrm{Heap}(a_{i+1})) & \Pi_2: \overline{\forall x} \overline{\forall y} ((\neg \mathrm{Heap}(x) \land f(x) = y) \rightarrow \\ \mathbf{C}: \neg \mathrm{Heap}(a_{10000}) & \neg \mathrm{Heap}(f^{-1}(y+1))) \\ & \mathbf{K}: \neg \mathrm{Heap}(a_{10000}) \end{array}$$

For all $a \in A$, define f(a) = n iff a is composed of n units.

Mathematical representation

Basic claim: Felicitously formalizing even simple forms of the sorites requires a *representation theorem*.

Proposition 1: Suppose that $A = \langle A, \prec \rangle$ is a finite discrete linear order. Then there is a unique $n \in \mathbb{N}$ and bijection $f: A \to \{0, ..., n-1\}$ s.t.

- i) $a_i \prec a_i$ iff $f(a_i) < f(a_i)$
- ii) a_i is the immediate \prec -successor of a_i iff $f(a_i) = f(a_i) + 1$

We can now "officially" formulate the following argument:

 Π_1 : $\neg \text{Heap}(a_0)$

 Π_2 : Proposition 1

 $\Pi_3: \forall x \forall y ((\neg \operatorname{Heap}(x) \land \rightarrow f(x) = y) \rightarrow \neg \operatorname{Heap}(f^{-1}(y+1)))$

 Π_4 : Addition axioms of Q

K: $\neg \text{Heap}(a_{10000})$

The first level of mathematical involvement

- Other examples of mathematical representation in arguments:
 - Gödel numbering, modality via Kripke semantics, preference as relations or utilities, credences as probability measures, ...
- Arguments illustrating the 1st level of mathematical involvement:
 - Can't be formulated/applied w/o mathematical representation.
 - Typically involves expanding signature/schema to include mathematical and mixed expressions – e.g. $0, 0', \dots, f(x), f^{-1}(x)$.
 - Axioms governing them must then be added e.g. Q.
 - But the arguments are enthymemic w/o representation thms.
 - So where are they provable?
- ► Fact: Proposition 1 is provable in RCA₀.
 - If $A = \langle a_0, \dots, a_{n-1} \rangle$ we can define $s(a_i) = a_{i+1}$ by b'd min.
 - ► Then $f(a_0), f(s(a_i)) = i + 1$ exists by Δ_1^0 -CA and $\operatorname{Ind}(\Sigma_1^0)$.
- Upshots:
 - Assumes a structuralist understanding of representation thms.
 - But can now take RCA₀ as a formal premise in the argument.

From collective nouns to magnitude-related adjectives

Terminology from philosophy of language / linguistics:

- Collective nouns: heap, bald, forest...
- Gradable (or scalar) adjectives:

- Magnitude-related: tall (length), heavy (mass), brief (time), ...
- b) Non-magnitude-related: happy, nice, important, ...

Preliminaries

Continuous sorites

Intuitively, a hundredth of an inch cannot make a difference to whether or not a man counts as tall – such tiny variations, undetectable using the naked eye and everyday measuring instruments ... So we have the principle

(Tol_{tall}) If x is tall, and y is only a hundredth of an inch shorter than x, then y is also tall.

But imagine a line of men, starting with someone seven feet tall, and each of the rest a hundredth of an inch shorter than the man in front of him. Repeated applications of (Tol_{tall}) ... imply that each man we encounter is tall, however far we continue. And this yields a conclusion which is clearly false, namely that a man less than five feet tall, reached after three Keefe 2000 thousand steps ... is also tall.

Preliminaries

From collective nouns to magnitude-related adjectives

Intuitively, a hundredth of an inch cannot make a difference to whether or not a man counts as tall – such tiny variations, undetectable using the naked eye and everyday **measuring instruments** ... So we have the principle

 (Tol_{tall}) If x is tall, and y is only a hundredth of an inch shorter than x, then y is also tall.

But imagine a line of men, starting with someone seven feet tall, and each of the rest a hundredth of an inch shorter than the man in front of him. Repeated applications of (Tol_{tall}) ... imply that each man we encounter is tall, however far we continue. And this yields a conclusion which is clearly false, namely that a man less than five feet tall, reached after three thousand steps ... is also tall. Keefe 2000

Hallmarks of extensive measurement ...

Extensive measurement

Preliminaries

Suppose we have an empirical structure $\mathcal{A} = \langle A, \preceq, \circ \rangle$ which we would like to reason about via $f: A \to \mathbb{R}^+$ s.t.

- i) $a \prec b$ iff f(x) < f(b)
- ii) $f(a \circ b) = f(a) + f(b)$

What are necessary and sufficient conditions on \mathcal{A} for f(x) to exist?

Hölder's Theorem±

Let $\mathcal{A} = \langle A, \prec, \circ \rangle$ be s.t. $A \neq \emptyset$, \prec on $A^2, \circ : A^2 \to A$. Then there is f(x)representing A in $\mathcal{R} = \langle \mathbb{R}^+, \leq, + \rangle$ – i.e. i) and ii) hold – iff

- i) ≺ is a weak order i.e. reflexive, transitive, and connected;
- ii) Weak associativity: $a \circ (b \circ c) \sim (a \circ b) \circ c$ for all $a, b, c \in A$;
- iii) Monotonicity: $a \leq b$ iff $a \circ c \leq b \circ c$ iff $c \circ a \leq c \circ b$ for all $a, b, c \in A$;
- iv) Archimedean: For all $a, b \in A$, if $a \leq b$, then for all $c, d \in A$, there exists $n \in \mathbb{N}$ such that $\overline{n}a \circ c \prec \overline{n}b \circ d$.

Moreover, if $f': A \to \mathbb{R}^+$ also satisfies i), ii), then $\exists c > 0$ s.t. f'(x) = cf(x).

Hölder's Theorem[±] in RCA₀

- Hölder's original theorem (Hölder 1901):
 - \triangleright Stronger assumptions: \mathcal{A} is an ordered Archimedean group satisfying the Dedekind property.
 - Stronger conclusion: f(x) is **onto** to \mathbb{R} .
- ► Hölder's Theorem[±] (Krantz 1968 & et al. 1971, Roberts & Luce 1968)
 - If we don't require *onto*, weaker assumptions about A suffice.
 - In this case the proof is constructive.
- ightharpoonup Hölder's Theorem⁻: If A is an ordered Archimedean group, then Ais order isomorphic to a subgroup of $\langle \mathbb{R}^+, \leq, + \rangle$.
- ► Solomon (1998) showed Hölder's Thoerem⁻ is provable in RCA₀.
 - Archimedean: For all $a, b \in A$, there exists $n \in \mathbb{N}$ s.t. n times

$$\overline{n}a =_{\operatorname{df}} \overbrace{a \circ \ldots \circ a} \succeq b.$$

▶ The proof can be adapted to show that Krantz et al. 1971's proof of Hölder's Theorem $^{\pm}$ can also be carried in RCA₀.

On the proof of Hölder's Thoerem⁻

- For $u \prec a$ let N(u, a) = the unique $n \in \mathbb{Z}$ s.t. $\overline{n}u \preceq a \prec \overline{(n+1)}u$.
- ▶ Suppose $A^+ = \{a \in A : a \succ e\}$ does not contain a \prec -least elt.
 - For any "unit" $u \in A^+$, there is $\langle u_k : k \in \mathbb{N} \rangle$ s.t. $\overline{2}u_{k+1} \leq u_k$.
 - As if $y \prec u_k$, then y or $u_k \circ y^{-1}$ will be \leq "half" of x_k .
- Fixing $u \prec a$, we can now "measure" $a \in A^+$ as follows:

- ▶ Define $f(a) = \lim_{k \to \infty} \frac{N(u_k, a)}{N(u_k, u)} \in \mathbb{R}$ and observe $N(u_k, u) \geq 2^k$.
 - ▶ Thus if $q_k = \frac{N(u_k, a)}{N(u_k, u)}$, then $|q_{k+1} q_k| \le 2^{-k}$.
- $ightharpoonup \langle q_k \mid k \in \mathbb{N} \rangle$ is a constructive, fast-converging Cauchy seq.
 - ▶ This is *exactly* how a real number *r* is defined in RCA₀.

The mathematical involvement of the sorites for tall

- Claim: It is not possible to convincingly formulate a sorites argument for tall (e.g.) without measurement theoretic vocabulary.
- ▶ E.g. this is what allows us to formulate Tolerance as

$$(\operatorname{Tol}_{tall}^*) \ \forall x \in A \forall y \in A(\operatorname{Tall}(x) \land |f(x) - f(y)| < 0.01 \to \operatorname{Tall}(y))$$

- ► So (something like) Hölder's Theorem[±] becomes a formal premise.
- But this requires both empirical and mathematical axioms.
 - Positivity: $a \prec a \circ b \Rightarrow$ empirical domain is infinite. (Required?)
 - ▶ But since $RCA_0 \vdash H\"{o}lder^{\pm}$, all $r \in ran(f)$ can be *computably* approximated as $\langle q_k : k \in \mathbb{N} \rangle$.
- So we do not broach the **2nd level of math.** involvement.
 - ▶ I.e. the argument does **not** assume properties of \mathbb{R} beyond those given in its (standard Reverse Mathematical) definition.

From the conditional sorites to the continuous sorites

- Common intuition: Discretization into units e.g. .01 inch does not do justice to our intuitions about how vague gradable adjectives are "insensitive to small changes".
- ▶ Paradigmatically true of "perceptual continua":

Imagine a patch darkening **continuously** from white to black. At each moment during the process the patch is darker than it was at any earlier moment. Darkness comes in degrees. The patch is dark to a greater degree than it was a second before, even if the difference is too small to be discriminable by the **naked eve.** Given that there are as many moments in the interval of time as there are real numbers between 0 and 1, there are at least as many degrees of darkness as there are real numbers between 0 and 1, an uncountable infinity of them. Such numbers can be used to measure degrees of darkness.

Williamson 1994, p. 113

- Same presumably also makes sense for magnitude-related adjectives like tall - e.g. when restricted to points on a ruler.
 - (Important because it's less clear what representation theorem) is appropriate for color, intensity, etc.)

- Three mathematically-inspired options:
 - 1) Metrical: Williamson 1994, Weber & Colyvan 2010, Weber 2021

Continuous sorites

000000000

- 2) Topological: Weber & Colyvan 2010
- 3) Vicinity-based: Dzhafarov & Dzhafarov 2010a/b

How to generalize tolerance?

- ► Three mathematically-inspired options:
 - 1) Metrical: Williamson 1994, Weber & Colyvan 2010, Weber 2021
 - 2) Topological: Weber & Colyvan 2010
 - 3) Vicinity-based: Dzhafarov & Dzhafarov 2010a/b
- ► Why 1) over 2) and 3)?
 - Options 2) and 3) collapse the distinction between changes over "one step" and over "many steps". (Rizza 2013)
 - So it's unclear if the results are "paradoxes of vagueness" or just (necessary) mathematical facts about mappings from the relevant spaces to "degrees".
 - But the proofs of the relevant "anti-representation theorems" are still mathematically involved to (at least) the same extent. (Dhzafarov 2019)

The Leibniz Continuity Condition

Leibniz (1687): Nature does not make jumps. (Natura non saltum facit.)

L'Huilier (1787): If a variable quantity at all stages enjoys a certain property, its limit will enjoy the same property.

Priest (2006): Given any limiting process, whatever holds up to the limit holds at the limit.

Recall:

- $ightharpoonup \mathcal{X} \subseteq \mathbb{R}$ is bounded above (BA) if $\exists r \forall s \in \mathcal{X} (s < r)$.
- \triangleright Presuming \mathcal{X} is bounded above, we define

$$\sup(\mathcal{X}) =$$
 the least upper bound of \mathcal{X} .

Weber & Colyvan 2010:

ightharpoonup Suppose that $\varphi(x)$ is a vague predicate with field C and that $f: C \to [s,t]$ – a closed interval of \mathbb{R} – is a **bijection**.

(LCC)
$$\forall \mathcal{X} \subseteq \mathbb{R}(\mathrm{BA}(\mathcal{X}) \land \forall r (r \in \mathcal{X} \to \varphi(f^{-1}(r))) \to \varphi(f^{-1}(\sup(\mathcal{X}))))$$

▶ This is **not** a valid schema – e.g. take $\varphi(f^{-1}(r))$ iff r is rational.

ℝ …

The continuous sorites as an argument

- \blacktriangleright "Set up" axioms Σ :
 - ightharpoonup P(x) a vague predicate e.g. green.
 - ightharpoonup C a "continuum" for P(x) e.g. green-blue spectrum
 - ightharpoonup \prec a total order on C e.g. less green than s.t.

$$P(a) \land b \prec a \rightarrow P(b)$$

- ▶ $f: C \to [s,t]$ a bijection and $a \prec b \to f(a) < f(b)$.
- ► W&C's formulation as an argument in standard form:

$$P_1: P(f^{-1}(s))$$

$$P_2: \ \forall \mathcal{X} \subseteq \mathbb{R}(\mathrm{BA}(\mathcal{X}) \land \forall r (r \in \mathcal{X} \to \varphi(f^{-1}(r))) \to \varphi(f^{-1}(\sup(\mathcal{X}))))$$

C:
$$P(f^{-1}(t))$$

What is this supposed to show?

Green $(f^{-1}(470))$ Green $(f^{-1}(530))$ C $\{a \in C : Green(a)\}$ 530

Argument or proof?

$$P_1: P(f^{-1}(s))$$

Preliminaries

$$P_2: \ \forall \mathcal{X} \subseteq \mathbb{R}(\mathrm{BA}(\mathcal{X}) \land \forall r (r \in \mathcal{X} \to \varphi(f^{-1}(r))) \to \varphi(f^{-1}(\sup(\mathcal{X}))))$$

$$P_3\colon \ \forall \mathcal{X}\subseteq \mathbb{R}(\mathrm{BB}(\mathcal{X}) \land \forall r(r\in \mathcal{X} \to \varphi(f^{-1}(r))) \to \varphi(f^{-1}(\inf(\mathcal{X}))))$$

C:
$$P(f^{-1}(t))$$

How do we get from P_1, P_2, P_3 to C?

Argument or proof?

$$P_1: P(f^{-1}(s))$$

$$P_2: \ \forall \mathcal{X} \subseteq \mathbb{R}(\mathrm{BA}(\mathcal{X}) \land \forall r (r \in \mathcal{X} \to \varphi(f^{-1}(r))) \to \varphi(f^{-1}(\sup(\mathcal{X}))))$$

$$P_3 \colon \forall \mathcal{X} \subseteq \mathbb{R}(\mathrm{BB}(\mathcal{X}) \land \forall r (r \in \mathcal{X} \to \varphi(f^{-1}(r))) \to \varphi(f^{-1}(\inf(\mathcal{X}))))$$

C: $P(f^{-1}(t))$

How do we get from P_1, P_2, P_3 to C? (Reconstructing Weber 2021 based on Chase)

- 1) Suppose Σ , $P(f^{-1}(s))$ and for a contradiction $\neg P(f^{-1}(t))$.
- 2) Define the following subsets of $[s,t] \subseteq \mathbb{R}$:

$$U=\{f(x):P(x)\ \land\ x\in C\}\qquad V=\{f(x):\neg P(x)\ \land\ x\in C\}$$
 3) $U,V\neq\emptyset,[s,t]=U\sqcup V,\ U$ bounded above, V bounded below.

- 5) $[0, v \neq v, [s, t] = 0 \sqcup v, [v]$ bounded above, [v] bounded below.
- 4) By the Supremum and Infimum Principles, $\sup(U)$, $\inf(V)$ exist.
- 5) So $P(f^{-1}(\sup(U)))$ by P_2 and $\neg P(f^{-1}(\inf(X)))$ by P_3 .
- 6) Since < is a linear order on \mathbb{R} , we must have one of i) $\sup(U) < \inf(V)$ or ii) $\inf(V) < \sup(U)$ or iii) $\sup(U) = \inf(V)$.
 - i-ii) $\exists r \in \mathbb{R}(\sup(U) < r < \sup(V))$. Since U < r, $\neg P(f^{-1}(r))$. Since r < V, $P(f^{-1}(r))$. Contradiction. Similarly for ii).
 - iii) If $\sup(U) = \inf(V) = r$, then P(r) and $\neg P(r)$ 5). Contradiction.

Argument or proof?

 $P_1: P(f^{-1}(s))$

 $P_2: \ \forall \mathcal{X} \subseteq \mathbb{R}(\mathrm{BA}(\mathcal{X}) \land \forall r (r \in \mathcal{X} \to \varphi(f^{-1}(r))) \to \varphi(f^{-1}(\sup(\mathcal{X}))))$

 $P_3 \colon \forall \mathcal{X} \subseteq \mathbb{R}(\mathrm{BB}(\mathcal{X}) \land \forall r (r \in \mathcal{X} \to \varphi(f^{-1}(r))) \to \varphi(f^{-1}(\inf(\mathcal{X}))))$

C: $P(f^{-1}(t))$

How do we get from P_1, P_2, P_3 to C? (Reconstructing Weber 2021 based on Chase)

- 1) Suppose Σ , $P(f^{-1}(s))$ and for a contradiction $\neg P(f^{-1}(t))$.
- 2) Define the following subsets of $[s,t] \subseteq \mathbb{R}$:

$$U=\{f(x):P(x)\ \land\ x\in C\}\qquad V=\{f(x):\neg P(x)\ \land\ x\in C\}$$
 3) $U,V\neq\emptyset,[s,t]=U\sqcup V,\ U$ bounded above, V bounded below.

- 4) By the Supremum and Infimum Principles, $\sup(U)$, $\inf(V)$ exist.
- 5) So $P(f^{-1}(\sup(U)))$ by P_2 and $\neg P(f^{-1}(\inf(V)))$ by P_3 .
- 6) Since < is a linear order on \mathbb{R} , we must have one of i) $\sup(U) < \inf(V)$ or ii) $\inf(V) < \sup(U)$ or iii) $\sup(U) = \inf(V)$.
 - i-ii) $\exists r \in \mathbb{R}(\sup(U) < r < \sup(V))$. Since U < r, $\neg P(f^{-1}(r))$. Since r < V, $P(f^{-1}(r))$. Contradiction. Similarly for ii).
 - iii) If $\sup(U) = \inf(V) = r$, then P(r) and $\neg P(r)$ 5). Contradiction.

Continuous sorites 00000000000

Reverse philosophical analysis

 P_0 : "Set up" axioms Σ .

 $P_1: P(f^{-1}(s))$

 $P_2: \forall \mathcal{X} \subseteq \mathbb{R}(BA(\mathcal{X}) \land \forall r(r \in \mathcal{X} \to \varphi(f^{-1}(r))) \to \varphi(f^{-1}(\sup(\mathcal{X}))))$

 $P_3: \forall \mathcal{X} \subseteq \mathbb{R}(BB(\mathcal{X}) \land \forall r(r \in \mathcal{X} \to \varphi(f^{-1}(r))) \to \varphi(f^{-1}(\inf(\mathcal{X}))))$

 P_4 : Extension of Comprehension to predicates containing P, C, f.

P₅: Supremum Principle: $\forall \mathcal{X} \subseteq \mathbb{R}(BA(\mathcal{X}) \to \sup(\mathcal{X}) \text{ exists})$ Infimum Principle: $\forall \mathcal{X} \subseteq \mathbb{R}(BB(\mathcal{X}) \to \inf(\mathcal{X}) \text{ exists})$

C: $P(f^{-1}(t))$

Complication: P_2, P_3, P_5 are 3rd-order and can't be expressed in \mathcal{L}_2 .

Work around: Rather than considering $\mathcal{X} \subseteq \mathbb{R}$, we consider doubly indexed sequences $\langle q_{m,n}:m,n\in\mathbb{N}\rangle$ where $r_m=\langle q_{m,n}:n\in\mathbb{N}\rangle$ is s.t. $\forall k \forall i (|q_k - q_{k+i}| < 2^{-k}).$

- ▶ We consider the "sequential reformulations" of P_2, P_3, P_5 in \mathcal{L}_2 .
 - ► Call these LCC_{sup}, LCC_{inf}, Sup, and Inf.
 - Claim: This does not change the rhetorical setting.

Reverse philosophical analysis

(part 2)

- Enthymemic premise of the continuous sorites:
 - 1) Representation Theorem for $\exists f: C \to [s,t]$ provable in T.
 - 2) The extension of Comprehension to P, C, f over T.
 - 3) The Sup and Inf Principles.
- A classical result of Reverse Mathematics:

$$\mathsf{RCA}_0 \vdash \mathsf{Sup} \leftrightarrow \mathsf{Inf} \leftrightarrow \mathsf{ACA}$$

(ACA is Arithmetical Comprehension formulated as a single \mathcal{L}_2 -sentence.)

- ► ACA is (in some sense) *powerful* e.g.
 - ▶ $ACA_0 = RCA_0 + ACA \vdash The Halting Problem (K) exists.$
 - ▶ For all $n \in \mathbb{N}$, $ACA_0 \vdash K^{(n)}$ exists.
 - ▶ ACA is *denied* by constructivists and some predicativists.
- Broaching the second level of mathematical involvement:
 - The reasoning of the continuous sorites requires both mathematical representation using $\mathbb R$ and the assumption that $\mathbb R$ satisfies properties **beyond its definition**.

Specker sequences and the continuous sorites

(part 1)

- ► The Carrot: Novel rhetorical options
 - 1) Reject Representation Theorem or (better?) T.
 - 2) Reject extension of Comprehension to empirical vocabulary.
 - 3) Reject ACA.
- The Stick: In order to monger the paradox, either you or your customers have to accept ACA.
 - Or: It's hard to do "fancy analytic philosophy" and be a nominalist/fictionalist/constructivist at the same time.
- What is at issue can be illustrated by a Specker sequence.
 - ▶ I.e. $S = \langle s_k \in \mathbb{Q} : k \in \mathbb{N} \rangle$ with the following properties:
 - i) computable: there is an algorithm $\alpha(i) = s_i$
 - monotonic: $i < j \rightarrow s_i < s_j$
 - iii) bounded: in fact $\forall i(s_i < 1)$
 - iv) non-computable least upper bound: $r = \sup(\{s_k : k \in \mathbb{N}\})$ is not given by a computable Cauchy sequence (i.e. no computable modulus of convergence)

Specker sequences and the continuous sorites

(part 2)

- ▶ Definition of $S = \langle s_k \in \mathbb{Q} : k \in \mathbb{N} \rangle$:
 - Let $\alpha(x)$ be a computable injective enumeration of K i.e. $K = \{\alpha(0), \alpha(1), \alpha(2), \ldots\}$ without repetitions.
 - Let

$$s_k = \sum_{i=0}^k 2^{-\alpha(i)-1} < 1$$

- If we let $r = \sup(\langle s_k \rangle)$ and assume that $r = \langle q_k \rangle$ with $\forall k \forall i (|q_k q_{k+i}|) \leq 2^{-k}$ (e.g.) then we could decide K.
- Measurement-theoretic operationalization:
 - Think of $\alpha(x)$ as outputting digits in the expansion of $r = \sup\{g(a) : a \in C \land \operatorname{Green}(a)\}$ and g(x) scales C into [0,1].
 - If there is i s.t. $\alpha(i) = m$, then the mth digit of r is 1.
 - And thus Green(a) for all $a \in C$ s.t. $g(a) \le 2^{m-1}$.
 - ▶ Must we also have $Green(g^{-1}(r))$?
 - ▶ Weber & Colyvan: Yes (stipulatively) if we presume that Green(x) is within the scope of LCC.
 - ► Empirically: No (presumably).
- ▶ Q: Are the boundaries of vague predicates regular/predictable or chaotic/unknowable?

Preliminaries

(cf. Hume 1748)

The recursive reals and the missing shade of blue

Refined rhetorical options:

- ightharpoonup Realism about ightharpoonup Continuism about C: Reject the LCC.
- Constructivism about \mathbb{R} / Discontinuism about C: I.e. "gaps" in both; so reject both mathematical and empirical sups/infs.
- ▶ Realism about \mathbb{R} / Discontinuism about C: $f(r) \notin C$ (totality fails); accept mathematical sups/infs; reject empirical sups/infs.
- Constructivism about \mathbb{R} / Continuism about C: $f^{-1}(b) \notin \mathbb{R}^{\text{Rec}}$: extension of schema to C, f, P "smuggles in" Σ_1^0 -comprehension.

28/29

A two way street?

- What I'm not claiming:
 - ▶ The continuous sorites poses a natural or important problem.
 - ► Any of the above is the *best* response.
 - ► (If you don't like this example of "reverse philosophy", we've got many others.)
- ← What I *am* claiming:
 - The continuous sorites is a good example of how contemporary analytic philosophy is often mathematically involved.
 - ▶ Reverse mathematics helps us characterize the involvement and makes available novel rhetorical options.
- ⇒ Novel (?) mathematical questions:
 - Does Hölder's Theorem^{-,±} imply Σ₁⁰-induction over RCA₀*?
 ▶ Relationship to Simpson & Yokoyama 2012.
 - 2) What is the best way to formalize Hölder's Theorem in \mathcal{L}_2 ?
 - ► Status of 'empirical comprehension'? ACA₀ or Z₂ over RCA₀?
 - 3) Strength of other rep. thms e.g. Debreu (1954/59).
 - 4) Reverse mathematics of connected spaces.
 - Relationship to Mummert 2005, Walker 2008, Dhzafarov 2019.

Q: Who owns the sorites?

Preliminaries

Philosophical Logic (e.g. non-classical,)	Philosophy of language & mind,	Linguistics (semantics)	Empirical Psychology (psychophysics,)	Mathematical Psychology (measurement,)	Economics (decision theory,)	Mathematics (logic, topology,)
Weber 2021 Magidor 2012 Corbreros et al. 2012 Weber & Colyvan 2010 Field 2003/8 Boolos 1991 Parikh 1983	Pagin 2011 Hyde 2008 Shapiro 2006 Graff 2001 Keefe 2000 Smith & Keefe 2000 Williamson 1994 Sorenson 1988	Itzakhi 2021 Burnett 2017 Lassiter 2017 van Rooij 2011 Sassoon 2010 Kennedy 2007 Barker 2002	Cervantes & E. Dzhafarov, 2019. Gescheider 1997	E Dzhafarov, & Colonius 2022 Batchelder et. al 2016/18 Dzhafarov & Dzhafarov 2010a/b	Anand 1993 Quinn 1990 Quinn 1987 Kahneman & Tversky 1979	Dzhafarov 2019 Dean 2018 Hájek 2013 Sazovon 1995 Nelson, Buss 1986 Vopenka 1979
van Frassen 1966 Zadeh 1965	Fine 1975 Wright 1975	Kamp1975			Ivelsky 1979	Cook 1975
	Dummett 1972/5			Fishburn 1973 Krantz et. 1971 Tversky 1967		Parikh 1971
Körner 1955 Halldén 1949			Krantz 1964	Luce et al. 1963		Yessenin-Volpin 1961/72
	Waismann 1945		Stevens 1946		Debreu 1959 Scott & Suppes 1958 Luce 1958	Wang 1958 Borel 1952
	Black 1937 Russell 1923		Wright & Pitt 1934	von Helmholtz 18996	Armstrong 1948 Borel 1907	Bernays 1935 Fréchet 1913
	Diogenes Laertius c230 CE Eubulides c350 BCE		Weber 1830			Frege 1879

A: Mathematics.