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In a nutshell

During this talk, I will (not necessarily in that order). . .

gradually introduce the program Reverse Mathematics (RM)
with an eye on philosophical/foundational questions,

present some recent RM results that are jww Dag Normann,

and discuss the relevance to philosophy and foundations of
mathematics.

My collaborators are not guilty of my opinions.
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Part I: hubris Part II: catharsis Part III: Brouwer and Plato

The aim of RM is classification

To find the minimal axioms necessary for proving a theorem of
ordinary mathematics.

(Q1) What does ordinary mathematics mean?

(Q2) What scale does ‘minimal’ refer to and why choose that one?

(Q3) Are ‘the’ minimal axioms always unique and unambiguous?

For Part I, it suffices to know that there are three major classes,
weak, medium, and strong, of logical strength (Gödel hierarchy).

The investigation of RM generally takes place in the weak part and
the ‘lower end’ of the medium part, using the language L2 of
second-order arithmetic Z2.

The language L2 only includes first and second-order variables
‘n ∈ N’ and ‘X ⊆ N’. Higher-order objects are represented/coded
via the latter. Any formalisation involves representations/codes.
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Q1: What is ordinary mathematics?

In SOSOA, the Bible of RM, Simpson describes ordinary
mathematics as:

that body of mathematics that is prior to or independent
of the introduction of abstract set theoretic concepts.

with the caveat that theorems should not be modified:

The typical constructivist response to a nonconstructive
mathematical theorem is to modify the theorem by adding
hypotheses or “extra data”. In contrast, our approach in
this book is to analyze the provability of mathematical
theorems as they stand, passing to stronger subsystems of
Z2 if necessary. (SOSOA, p. 32)

The final sentence is somewhat paradoxical as follows.
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Coding ordinary mathematics

All here shall known ε-δ-continuity for f : [0, 1]→ R as follows:

(∀ε > 0, x ∈ [0, 1])(∃δ > 0)(∀y ∈ [0, 1])(|x−y | < δ → |f (x)−f (y)| < ε).

Now compare this to ‘continuity-via-codes’ in L2 from SOSOA:

Problems:
1 NO mainstream math textbook uses Def. II.6.1 above.
2 Using Def. II.6.1 introduces a modulus of continuity, typical

“extra data” from constructive math (Kohlenbach).

Question: why does Def. II.6.1 still count as ordinary math?
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Coding ordinary mathematics

Question: why does Def. II.6.1 still count as ordinary math?

Based on a construction by D. Normann, U. Kohlenbach shows
that these two definitions are equivalent in a weak higher-order
system based on the well-known weak König’s lemma (WKL).

(∀ε > 0, x ∈ [0, 1])(∃δ > 0)(∀y ∈ [0, 1])(|x−y | < δ → |f (x)−f (y)| < ε).

Problem solved: using codes as in Def. II.6.1 or plain
ε-δ-continuity yields the ‘same theorems’, assuming WKL.
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Coding ordinary mathematics

Around 1850, Riemann’s Habilschrift introduces his integral and
forces discontinuous functions into mainstream math.

Theorem (Arzela, 1885)

Let fn : ([0, 1]× N)→ R be a sequence such that

1 Each fn is Riemann integrable on [0, 1].

2 There is M > 0 such that (∀n ∈ N, x ∈ [0, 1])(|fn(x)| ≤ M).

3 limn→∞ fn = f exists and is Riemann integrable.

Then limn→∞
∫ 1

0 fn(x)dx =
∫ 1

0 f (x)dx .

Formulated with codes in L2, this theorem falls in the ‘weak’ range.

Formulated without codes, this theorem is at the very top of the
‘medium’ range (near Z2), far beyond the usual range of RM.

See arxiv: Normann-Sanders, On the uncountability of R.
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Intermediate conclusion

If one wishes to study mathematical theorems as they stand,
coding in L2 plays the following role:

Coding continuous functions in L2 is OK, following the work of
Normann and Kohlenbach.

Coding Riemann integrable functions (=continuous AE and
bounded) in L2 is not OK, following the work of Normann-Sanders.

The difference between ‘codes’ or ‘no codes’ for Riemann integrable
functions can be huge, as shown by Arzela’s convergence theorem.

To properly study discontinuous functions, Kohlenbach has
proposed higher-order RM involving all finite types. The language
Lω has variables for

n ∈ N, f : N→ N,Y : NN → N,F : R→ R,G : (R→ R)→ R, . . .

Higher-order RM is not the full answer, as our answer to Q3 shows.
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Q3: are ‘the’ minimal axioms always unique?

Tao and others have stressed the intimate connection between
‘compactness’ and ‘local-global principles’.

PITo is one of the first ‘local-global principles’.

Theorem (PITo , Pincherle, 1885)

A locally bounded function on 2N is bounded.

Pincherle stresses that his theorem applies to any function.

1 Assuming a fragment of countable choice, we have
WKL↔ PITo , i.e. PITo is in the weak range.

2 Without countable choice, PITo cannot be proved in the
medium range (but provable without AC).

No unique/unambiguous minimal collection of axioms!
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Q3: are ‘the’ minimal axioms always unique?

Pincherle’s theorem PITo is just one example. Open sets give rise
to many examples.

In RM, an open set is given by a union of basic open balls
∪n∈N(an, bn).

Following Kreuzer and others, we have studied open sets in R via
(third-order) characteristic functions. The following thms then
behave in the same way as PITo :

1 Urysohn lemma

2 Tietze extension theorem

3 Cantor-Bendixson theorem

4 Baire-Category theorem

5 . . .
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Intermediate conclusion II

Our answers to Q1 and Q3 have yielded the following:

Coding in L2 can change the logical strength of thms involving
Riemann integrable functions, unacceptable from the pov of RM.

Switching to Lω and Kohlenbach’s higher-order RM seems to create
other problems involving minimal axioms and countable choice.

Our hubris: everything seems wrong about RM.

Our catharsis: the answer to Q2 shows that all these problems go
away.

The aim of RM is: to find the minimal axioms necessary for
proving a theorem of ordinary mathematics.

(Q2) What scale does ‘minimal’ refer to and why choose that one?
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ATR0 (arithmetical transfinite recursion)
ACA0 (arithmetical comprehension)

weak


WKL0 (weak König’s lemma)
RCA0 (recursive comprehension)
PRA (primitive recursive arithmetic)
bounded arithmetic

It is striking that a great many foundational theories are linearly ordered by
[consistency strength] <. Of course it is possible to construct pairs of artificial
theories which are incomparable under <. However, this is not the case for the
“natural” or non-artificial theories which are usually regarded as significant in the
foundations of mathematics.
(Simpson, Gödel Centennial Volume; also: Koelner, Burgess, Friedman,. . . )
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and 80/90% of ordinary mathematics is provable in ACA0/Π1
1 -CA0.
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History of comprehension (and vice versa)

In Grundlagen der Mathematik, Hilbert and Bernays formalise (a
lot of) mathematics in a logical system H.

System H makes (essential) use of third-order parameters, but is
‘more second-order’ than previous systems (with Ackermann).

H inspired second-order arithmetic Z2 based on comprehension:

(∃X ⊂ N)(∀n ∈ N)(n ∈ X ↔ ϕ(n))

for any formula ϕ(n) in L2, language of Z2.

Indeed, the following is (explicitly) introduced in H:

(∃n ∈ N)(f (n) = 0)→ f (µ(f )) = 0 (Feferman’s µ)

yielding arithmetical comprehension as in ACA0. Similarly:

ν-functional produces witness to (∃f : N→ N)A(f ), yielding Z2.
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Comprehension by any other name

Z2 is based on comprehension as follows:

(∃X ⊂ N)(∀n ∈ N)(n ∈ X ↔ ϕ(n))

for any formula ϕ(n) in L2, language of Z2. (Kreisel?)

Zω2 is based on comprehension as follows:

(∃f : N→ N)A(f )↔ A(νk+1g .A(g)) (*)

for A ∈ Π1
k ∩ L2 and any k. (Feferman, Sieg, Suslin, Kohlenbach)

ZΩ2 is based on comprehension as follows:

(∃f : N→ N)(Y (f ) = 0)↔ E (Y ) = 0.

for any third-order Y : NN → N. E is called Kleene’s ∃3.

Connection: Z2 ≡L2 Zω2 ≡L2 ZΩ2 . Note 3rd vs 4th order!
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Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Incomprehensible!

Recall that Z2 ≡L2 Zω2 ≡L2 ZΩ2 .

The following third-order theorems
are provable in ZΩ2 , but not in Zω2 .

1 Arzelà’s convergence theorem for Riemann integral (1885).

2 A countably-compact metric space ([0, 1], d) is separable.

3 Baire category theorem (open sets as characteristic functions)

4 There is a function f : R→ R not in Baire class 2.

5 Baire characterisation theorem for Baire class 1.

6 Heine-Borel/Vitali/Lindelöf for uncountable coverings.

7 Basic Lebesgue measure/integral and gauge integral.

8 Unordered sums
∑

x∈R f (x) are countable (E.H. Moore)

9 Convergence theorems for nets indexed by NN (Moore-Smith).

10 The uncountability of R: there is no injection (or bijection)
from [0, 1] to N (Cantor, 1874).

11 Basic RM theorems with usual definition of countable set.
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6 Heine-Borel/Vitali/Lindelöf for uncountable coverings.

7 Basic Lebesgue measure/integral and gauge integral.

8 Unordered sums
∑

x∈R f (x) are countable (E.H. Moore)

9 Convergence theorems for nets indexed by NN (Moore-Smith).

10 The uncountability of R: there is no injection (or bijection)
from [0, 1] to N (Cantor, 1874).

11 Basic RM theorems with usual definition of countable set.



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Incomprehensible!

Recall that Z2 ≡L2 Zω2 ≡L2 ZΩ2 . The following third-order theorems
are provable in ZΩ2 , but not in Zω2 .

1 Arzelà’s convergence theorem for Riemann integral (1885).

2 A countably-compact metric space ([0, 1], d) is separable.

3 Baire category theorem (open sets as characteristic functions)

4 There is a function f : R→ R not in Baire class 2.

5 Baire characterisation theorem for Baire class 1.

6 Heine-Borel/Vitali/Lindelöf for uncountable coverings.
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Uncountability of R

Cantor (1874): for any sequence of reals (xn)n∈N, there is y ∈ R
such that xn 6= y for all n ∈ N.

To avoid the anti-platonist ire of Kronecker-Weierstrass, Cantor
(1874) only mentions that R and N are ‘therefore’ not one-to-one.

How hard is it to prove the ‘real’ uncountability of R as follows?

Theorem (NIN, see Kunen)

For Y : [0, 1]→ N, there are x , y ∈ [0, 1] s.t. x 6= y ∧Y (x) = Y (y)

Theorem (NBI, see Hrbacek-Jech)

For Y : [0, 1]→ N, there are distinct x , y ∈ [0, 1] such that
Y (x) = Y (y) OR there is n ∈ N with (∀x ∈ [0, 1])(Y (x) 6= n).

These are provable in ZΩ2 but not in Zω2 (and the weakest such).
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Two nice observations about the uncountability of R

Firstly, Zω2 + ¬NBI proves Z2 and is consistent.

By ¬NBI, there is
a bijection Y : [0, 1]→ N, i.e. there is a ‘first’ real x such that
Y (x) = 0, a ‘second’ real y such that Y (y) = 1, et cetera.

Hence, R is a potential infinity (following Stillwell) BUT one can
develop second-order RM ‘as usual’. Extraordinary math?

History repeats itself: Borel and others objected against AC
although their earlier work made (essential) us of AC. Weierstrass
rejected the idea that there can be different ‘sizes’ of infinity (like
N and R) although his earlier theorems imply NIN and NBI.

In contrast to the modern era, Weierstrass changed his mind in
light of Cantor’s work. . .
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N and R) although his earlier theorems imply NIN and NBI.

In contrast to the modern era, Weierstrass changed his mind in
light of Cantor’s work. . .
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Countable sets versus sets that are countable

The word ‘countable’ appears hundreds of times in Simpson’s
‘bible of RM’;

here, ‘countable’ means ‘given by a sequence’.

What happens if we use the real (third-order) definition of
‘countable’? The following theorems are then provable in ZΩ2 and
not provable in Zω2 .

(a) A countable subset of [0, 1] has a supremum (Bolzano-Weierstrass).

(b) A countable collection of basic open intervals covering [0, 1],
has a finite sub-cover. (Heine-Borel)

(c) Vitali’s covering theorem for countable collections.

(d) A countable set in R has finite measure.

(e) And probably everything else in RM mentioning ‘countable’...

Explosion: Π1
2 -CA0 follows from item (a) plus Π1

1 -CAω0 .

Warning: same for ‘countable’ combinatorics and the RM zoo!
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Problem, cause, and solution

PROBLEM: hundreds of intuitively weak third-order theorems are
classified as rather strong qua third-order comprehension, i.e. not
provable in Zω2 and provable in ZΩ2 , for Z2 ≡L2 Zω2 ≡L2 ZΩ2 .

CAUSE: comprehension functionals (like µ, νn,∃3) are
discontinuous (or: normal). The other theorems (uncountability of
R, Heine-Borel,. . . ) are non-normal, i.e. consistent with Brouwer’s
continuity theorem that ‘all functions are continuous’.

SOLUTION: split the hierarchy below ZΩ2 in normal and
non-normal part.

6

�
�
�

@
@@

@
@@ �

��

@
@@

RCAω0

ZΩ2

ZFC

Normal part with hierarchy
Π1

k -CAω0 and discontinuous
functionals νk . (Kohlenbach)

Non-normal part
consistent with Brouwer’s
continuity theorem
(Heine-Borel, uncountability of R, . . . )

Hierarchy for non-normal part????



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Problem, cause, and solution
PROBLEM: hundreds of intuitively weak third-order theorems are
classified as rather strong qua third-order comprehension, i.e. not
provable in Zω2 and provable in ZΩ2 , for Z2 ≡L2 Zω2 ≡L2 ZΩ2 .

CAUSE: comprehension functionals (like µ, νn,∃3) are
discontinuous (or: normal). The other theorems (uncountability of
R, Heine-Borel,. . . ) are non-normal, i.e. consistent with Brouwer’s
continuity theorem that ‘all functions are continuous’.

SOLUTION: split the hierarchy below ZΩ2 in normal and
non-normal part.

6

�
�
�

@
@@

@
@@ �

��

@
@@

RCAω0

ZΩ2

ZFC

Normal part with hierarchy
Π1

k -CAω0 and discontinuous
functionals νk . (Kohlenbach)

Non-normal part
consistent with Brouwer’s
continuity theorem
(Heine-Borel, uncountability of R, . . . )

Hierarchy for non-normal part????



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Problem, cause, and solution
PROBLEM: hundreds of intuitively weak third-order theorems are
classified as rather strong qua third-order comprehension, i.e. not
provable in Zω2 and provable in ZΩ2 , for Z2 ≡L2 Zω2 ≡L2 ZΩ2 .

CAUSE: comprehension functionals (like µ, νn,∃3) are
discontinuous (or: normal).

The other theorems (uncountability of
R, Heine-Borel,. . . ) are non-normal, i.e. consistent with Brouwer’s
continuity theorem that ‘all functions are continuous’.

SOLUTION: split the hierarchy below ZΩ2 in normal and
non-normal part.

6

�
�
�

@
@@

@
@@ �

��

@
@@

RCAω0

ZΩ2

ZFC

Normal part with hierarchy
Π1

k -CAω0 and discontinuous
functionals νk . (Kohlenbach)

Non-normal part
consistent with Brouwer’s
continuity theorem
(Heine-Borel, uncountability of R, . . . )

Hierarchy for non-normal part????



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Problem, cause, and solution
PROBLEM: hundreds of intuitively weak third-order theorems are
classified as rather strong qua third-order comprehension, i.e. not
provable in Zω2 and provable in ZΩ2 , for Z2 ≡L2 Zω2 ≡L2 ZΩ2 .

CAUSE: comprehension functionals (like µ, νn,∃3) are
discontinuous (or: normal). The other theorems (uncountability of
R, Heine-Borel,. . . ) are non-normal, i.e. consistent with Brouwer’s
continuity theorem that ‘all functions are continuous’.

SOLUTION: split the hierarchy below ZΩ2 in normal and
non-normal part.

6

�
�
�

@
@@

@
@@ �

��

@
@@

RCAω0

ZΩ2

ZFC

Normal part with hierarchy
Π1

k -CAω0 and discontinuous
functionals νk . (Kohlenbach)

Non-normal part
consistent with Brouwer’s
continuity theorem
(Heine-Borel, uncountability of R, . . . )

Hierarchy for non-normal part????



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Problem, cause, and solution
PROBLEM: hundreds of intuitively weak third-order theorems are
classified as rather strong qua third-order comprehension, i.e. not
provable in Zω2 and provable in ZΩ2 , for Z2 ≡L2 Zω2 ≡L2 ZΩ2 .

CAUSE: comprehension functionals (like µ, νn,∃3) are
discontinuous (or: normal). The other theorems (uncountability of
R, Heine-Borel,. . . ) are non-normal, i.e. consistent with Brouwer’s
continuity theorem that ‘all functions are continuous’.

SOLUTION: split the hierarchy below ZΩ2 in normal and
non-normal part.

6

�
�
�

@
@@

@
@@ �

��

@
@@

RCAω0

ZΩ2

ZFC

Normal part with hierarchy
Π1

k -CAω0 and discontinuous
functionals νk . (Kohlenbach)

Non-normal part
consistent with Brouwer’s
continuity theorem
(Heine-Borel, uncountability of R, . . . )

Hierarchy for non-normal part????



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Problem, cause, and solution
PROBLEM: hundreds of intuitively weak third-order theorems are
classified as rather strong qua third-order comprehension, i.e. not
provable in Zω2 and provable in ZΩ2 , for Z2 ≡L2 Zω2 ≡L2 ZΩ2 .

CAUSE: comprehension functionals (like µ, νn,∃3) are
discontinuous (or: normal). The other theorems (uncountability of
R, Heine-Borel,. . . ) are non-normal, i.e. consistent with Brouwer’s
continuity theorem that ‘all functions are continuous’.

SOLUTION: split the hierarchy below ZΩ2 in normal and
non-normal part.

6

�
�
�

@
@@

@
@@ �

��

@
@@

RCAω0

ZΩ2

ZFC

Normal part with hierarchy
Π1

k -CAω0 and discontinuous
functionals νk . (Kohlenbach)

Non-normal part
consistent with Brouwer’s
continuity theorem
(Heine-Borel, uncountability of R, . . . )

Hierarchy for non-normal part????



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Brouwer and continuity to the rescue

L.E.J. Brouwer is (in)famous for his intuitionism.

Intuitionistic mathematics is formalised using non-classical
continuity axioms that have a (non-classical) weak counterpart.

The ‘weak’ counterpart yields the usual axiom via the classically
valid Neighbourhood Function Principle (NFP).

Definition (NFP, 1970, Kreisel-Troelstra)

For any formula A, we have

(∀f ∈ NN)(∃n ∈ N)A(f n)→ (∃γ ∈ K0)(∀f ∈ NN)A(f γ(f )),

where ‘γ ∈ K0’ essentially means that γ is an RM-code/associate.

Note that f n is the finite sequence 〈f (0), f (1), . . . , f (n − 1)〉.
NFP expresses that there are (many) continuous choice functions.
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where ‘γ ∈ K0’ essentially means that γ is an RM-code/associate.

NFP has great properties (in contrast to comprehension):

1) Many non-normal theorems (Heine-Borel, Lindeloef, monotone
convergence theorem for nets, . . . ) are equivalent to natural
fragments of NFP.

2) The equivalences from 1) map to the Big Five equivalences,
under the canonical embedding of HOA in SOA.

The second item reminds one of Plato’s allegory of the cave.
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Plato and his -ism

Plato is well-known in (foundations of) mathematics for his
eponymous philosophy platonism, i.e.

the theory that mathematical objects are objective, timeless entities,

independent of the physical world and the symbols that represent them.

Plato’s allegory of the cave provides a powerful visual:

We can only know reflections/shadows/... of ideal objects.
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Foundations/philosophy of mathematics

One can (and people probably will) argue forever which ‘-ism’ is
the true foundations/philosophy of mathematics.

One could also take a hint from the exact sciences (to which math
technically belongs) and try to find evidence in support of one’s
viewpoint.

I present the previous picture as evidence supporting Platonism.
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Conclusion

Coding in L2 is not bad per se: it works for continuous functions,
but is a bad idea for discontinuous functions from the pov of RM.
This is witnessed by basic theorems, like Arzela’s convergence thm
for the Riemann integral.

To properly study discontinuous functions, one adopts
Kohlenbach’s higher-order RM. This ‘normal’ scale however
classifies ‘intuitively weak’ theorems as ‘rather strong’, including
the uncountability of R.

To solve this problem, one adopts the complimentary non-normal
scale based on classically valid continuity axioms (NFP) from
Brouwer’s intuitionistic mathematics.

In the spirit of Plato’s cave, the Big Five of RM are a reflection of
the non-normal scale under Kleene-Kreisel’s ECF.



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Conclusion

Coding in L2 is not bad per se: it works for continuous functions,
but is a bad idea for discontinuous functions from the pov of RM.

This is witnessed by basic theorems, like Arzela’s convergence thm
for the Riemann integral.

To properly study discontinuous functions, one adopts
Kohlenbach’s higher-order RM. This ‘normal’ scale however
classifies ‘intuitively weak’ theorems as ‘rather strong’, including
the uncountability of R.

To solve this problem, one adopts the complimentary non-normal
scale based on classically valid continuity axioms (NFP) from
Brouwer’s intuitionistic mathematics.

In the spirit of Plato’s cave, the Big Five of RM are a reflection of
the non-normal scale under Kleene-Kreisel’s ECF.



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Conclusion

Coding in L2 is not bad per se: it works for continuous functions,
but is a bad idea for discontinuous functions from the pov of RM.
This is witnessed by basic theorems, like Arzela’s convergence thm
for the Riemann integral.

To properly study discontinuous functions, one adopts
Kohlenbach’s higher-order RM. This ‘normal’ scale however
classifies ‘intuitively weak’ theorems as ‘rather strong’, including
the uncountability of R.

To solve this problem, one adopts the complimentary non-normal
scale based on classically valid continuity axioms (NFP) from
Brouwer’s intuitionistic mathematics.

In the spirit of Plato’s cave, the Big Five of RM are a reflection of
the non-normal scale under Kleene-Kreisel’s ECF.



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Conclusion

Coding in L2 is not bad per se: it works for continuous functions,
but is a bad idea for discontinuous functions from the pov of RM.
This is witnessed by basic theorems, like Arzela’s convergence thm
for the Riemann integral.

To properly study discontinuous functions, one adopts
Kohlenbach’s higher-order RM. This ‘normal’ scale however
classifies ‘intuitively weak’ theorems as ‘rather strong’, including
the uncountability of R.

To solve this problem, one adopts the complimentary non-normal
scale based on classically valid continuity axioms (NFP) from
Brouwer’s intuitionistic mathematics.

In the spirit of Plato’s cave, the Big Five of RM are a reflection of
the non-normal scale under Kleene-Kreisel’s ECF.



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Conclusion

Coding in L2 is not bad per se: it works for continuous functions,
but is a bad idea for discontinuous functions from the pov of RM.
This is witnessed by basic theorems, like Arzela’s convergence thm
for the Riemann integral.

To properly study discontinuous functions, one adopts
Kohlenbach’s higher-order RM. This ‘normal’ scale however
classifies ‘intuitively weak’ theorems as ‘rather strong’, including
the uncountability of R.

To solve this problem, one adopts the complimentary non-normal
scale based on classically valid continuity axioms (NFP) from
Brouwer’s intuitionistic mathematics.

In the spirit of Plato’s cave, the Big Five of RM are a reflection of
the non-normal scale under Kleene-Kreisel’s ECF.



Part I: hubris Part II: catharsis Part III: Brouwer and Plato

Final Thoughts

The revolution is not an apple that falls when it is ripe. You have
to make it fall. (AN & CG)

The safest general characterisation of the European philosophical
tradition is that it consists of a series of footnotes to Plato.

(A.N. Whitehead)

The Lebesgue integral in mathematics is perhaps best compared to
the imperial system in the USA. (anon)

We thank DFG, TU Darmstadt, John Templeton Foundation, and
Alexander Von Humboldt Foundation for their generous support!

Thank you for your attention!

Any (content) questions?
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