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During April 1–4, 2015 I will serve as an invited Scholar of Consequence with the
University of Connecticut Group in Philosophical and Mathematical Logic. As
part of that visit I will deliver their Annual Logic Lecture. This document
consists of an abstract and references for that lecture.

Abstract

In the philosophy of mathematics, there is a crucial distinction between potential
infinity and actual infinity. This distinction gives rise to four contrasting view-
points: ultrafinitism, finitism, predicativism, and infinitism. I am convinced
that of these four, finitism is the most objective. This conviction heightens
the importance of Hilbert’s program of finitistic reductionism. Some relevant
formal systems are PRA, WKL0, IR, ATR0, and ZFC. Foundational research
over several decades has revealed that large parts of contemporary mathemat-
ics, including the applicable parts, can be formalized in systems such as WKL0

which are finitistically reducible. This seems to provide a possible outline for
an objective justification of much of contemporary mathematics.
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